萤火虫优化算法

2024-04-13 20:44
文章标签 算法 优化 萤火虫

本文主要是介绍萤火虫优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

萤火虫优化算法

萤火虫优化算法(Firefly Algorithm,FA)是一种模仿自然界萤火虫发光与移动行为的一种群智能优化算法,由Yang Xin She于2009年提出。

算法原理

FA优化算法以萤火虫位置表示问题的可行解,算法依据萤火虫发光的亮度相互吸引的规律,在一定的范围内,实现萤火虫之间的位置移动从而实现解的搜索和更新。FA算法与优化问题的对应关系如下表所示。

CS优化问题
萤火虫位置可行解: X i = ( x i 1 , x i 2 , … , x i D ) X_i=(x_{i1},x_{i2},\dots,x_{iD}) Xi=(xi1,xi2,,xiD)
萤火虫亮度适应度

算法假设条件如下:

  • 算法中的所有萤火虫没有性别差异,任意两只萤火虫个体之间都可以相互吸引。
  • 萤火虫的吸引力与其亮度成正比,亮度低的萤火虫会向亮度高的个体转移,若两只萤火虫的亮度相等,则萤火虫会各自随机移动。
  • 萤火虫个体的发光亮度与求解问题的目标函数相关联,适应度越高,其亮度越高。

算法超参数

  • α \alpha α:步长因子;
  • β m a x \beta_{max} βmax:萤火虫光强度上界;
  • β m i n \beta_{min} βmin:萤火虫光强度下界;
  • γ \gamma γ:光吸收系数;
  • NP:种群大小;
  • Gmax:最大迭代数。

FA 认为光照强度和萤火虫之间的吸引力是两个重要变量。每只萤火虫都会被另一只比自己亮的萤火虫吸引。换句话说,任何一只萤火虫的吸引力都与其光强度成正比,而与测量光强度的距离成反比。

吸引力

吸引力定义为萤火虫 i i i观察到萤火虫 j j j的光强度,萤火虫的吸引力与光强度成正比,与测量光强度的距离成反比,其计算公式如式(1)所示。
β ( r ) = ( β m a x − β m i n ) e − γ r 2 + β m i n (1) \beta(r) = (\beta_{max} - \beta_{min}) e^{-\gamma r^2} + \beta_{min} \tag{1} β(r)=(βmaxβmin)eγr2+βmin(1)

  • β ( r ) \beta(r) β(r)称为萤火虫 i i i和萤火虫 j j j之间的吸引力;
  • r i j r_{ij} rij表示萤火虫 i i i和萤火虫 j j j的欧式距离。
    r i j = ∑ d = 1 D ( x i d − x j d ) (2) r_{ij}= \sqrt{\sum_{d=1}^D(x_{id}-x_{jd})} \tag{2} rij=d=1D(xidxjd) (2)

位置更新

如果萤火虫 j j j比萤火虫 i i i更亮,那么萤火虫 i i i将会向萤火虫 j j j移动
X i t + 1 = X i t + β ( r ) ( X j t − X i t ) + α ε (3) X_i^{t+1} = X_i^t + \beta(r)(X_j^t - X_i^t) + \alpha \varepsilon \tag{3} Xit+1=Xit+β(r)(XjtXit)+αε(3)

  • ε \varepsilon ε表示区间[-0.5,0.5]上均匀分布的随机数

对于当前种群中最亮的萤火虫,将会在其位置的局部进行开发。
X b t + 1 = X b t + α ε (4) X_b^{t+1}=X_b^t + \alpha \varepsilon \tag{4} Xbt+1=Xbt+αε(4)

初始化

初始解应当覆盖整个搜索空间,一般采用均匀分布随机生成初始解。
x i j 0 = x i , j m i n + r a n d ( 0 , 1 ) ⋅ ( x i , j m a x − x i , j m i n ) (5) x_{ij}^0=x_{i,j}^{min}+rand(0,1) \cdot (x_{i,j}^{max} - x_{i,j}^{min}) \tag{5} xij0=xi,jmin+rand(0,1)(xi,jmaxxi,jmin)(5)
其中,rand(0,1)表示0-1之间的随机数, x i j m a x x_{ij}^{max} xijmax x i j m i n x_{ij}^{min} xijmin分别表示该问题第j个维度变量的上下界。

伪代码


输入:超参数 ( α , β 0 , γ , N P , G m a x ) (\alpha,\beta_0,\gamma,NP,Gmax) (α,β0,γ,NP,Gmax)和搜索边界 X m i n X_{min} Xmin, X m a x X_{max} Xmax
输出:最优解
1:初始化
2:根据式(5)初始化位置种群X
3:计算种群适应度并按照适应度排序
4:记录群体最优gbest
5:优化搜索
6:For G = 1:Gmax
7: \qquad For i = 1:NP
8: \qquad \qquad For j = i:NP
9: \qquad \qquad \qquad If X i X_i Xi优于 X j X_j Xj
10: \qquad \qquad \qquad \qquad 按照式(3)或式(4)更新 X j X_j Xj
11: \qquad \qquad \qquad End If
12:计算种群适应度并按照适应度排序
13: \qquad 更新群体最优 g b e s t gbest gbest
14:End


注:优化算法并不保证能够得到问题的最优解,因此,算法输出的最优解并非问题的整体最优解,而是搜索过程中最好的一个解。

实验

实验选取二维的平方和函数,函数的最小值在点(a,b)取得,最小值为0。
f ( x 1 , x 2 ) = ( x 1 − a ) 2 + ( x 2 − b ) 2 (6) f(x_1,x_2) = (x_1 - a)^2 + (x_2-b)^2 \tag{6} f(x1,x2)=(x1a)2+(x2b)2(6)

实验参数如下:

参数
问题维度D2
种群数NP30
最大进化次数Gmax50
α \alpha α0.2
β m a x \beta_{max} βmax1
β m i n \beta_{min} βmin0.2
γ \gamma γ1
取值范围(-100,100)

FA算法搜索过程

FA算法在搜索中,种群收敛较快,种群多样性较差。

FA算法收敛曲线

最优值最差值平均值标准差
1.386e-81.937e-65.766e-74.785e-7

代码获取

关注微信公众号数学模型与算法回复 FA算法获取python代码

参考文献

[1] Yang X S. Firefly algorithms for multimodal optimization[C]//International symposium on stochastic algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 169-178.
[2] Li J, Wei X, Li B, et al. A survey on firefly algorithms[J]. Neurocomputing, 2022, 500: 662-678.

这篇关于萤火虫优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901172

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、