Kaggle Tabular Playground Series - Jan 2022 的baseline和日期特征处理

本文主要是介绍Kaggle Tabular Playground Series - Jan 2022 的baseline和日期特征处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

5e052d819162687bdef224d1b69411ee.png

来源:DeepHub IMBA
本文共1500字,建议阅读8分钟
本文作者将使用 HistGradientBoostingRegressor 进行测试。

Kaggle 决定将他们每月的表格竞赛延续到 2022 年这对于我们来说是非常好的消息。并且Kaggle 表示他们已经考虑大家的评论,所以我希望这意味着他们将不再使用庞大到使系统崩溃的数据集,这次1月的比赛数据集就不是很大。

在我看来,2022 年 1 月的竞赛问题是对涵盖几年时间的销售额的预测,这可以用机器学习构成一个时间序列。

我在下面的屏幕截图中包含了问题陈述的一部分,其中包含了和这项竞赛问题有关的代码:

4d4329de7be2f6efc3e1a846b827f696.png

本篇文章我使用 HistGradientBoostingRegressor 进行测试。首先要导入运行程序需要的库,numpy,Pandas,matplotlib 和 seaborn:

bf1bc121b2455783c83849f07db899aa.png

然后我使用 Pandas 读取csv 并将它们转换为df:

06092435e21b337194a9a2489c5861fc.png

我使用 seaborn 来分析目标,[‘num_sold’]是我们需要预测销售额。当我分析它时,可以看到它是偏斜的,并且有一些异常值:

223943ac002f5102bcb4d78a9081f0c0.png

然后我决定删除异常值,希望这样预测会有所改善。下面屏幕截图中的代码是我用来删除异常值的代码。虽然在这篇文章中没有记录,但我后来将乘数改为 2.25 而不是 1.5,并发现预测有小幅改进:

4c3f79b75263676daf5a8634e7672158.png

将异常值转换为空值后,我查看了这些空值并且进行了删除:

c93a38dbbf460daee96a27ba5b8bb017.png

我创建了变量 target,它将用于进行预测。我再次分析了目标,一旦删除了异常值,数据列的形状就大大改善了:

c4ea810afe264bba3c1a927919aa3cd4.png

我创建了一个新的df,这个df包含了train和test的数据:

f5e5631722ab2f61c422835392fa6f6c.png

除此以外,我还删除了 id_row 因为它不是必需的:

e783b2b3ae5edacaaa283b093d0bf7ab.png

然后使用pandas处理时间特征:

745410ab5ef434f14a4aa30eaeb5f590.png

日期列转换成时间戳后,我创建了一个新列 [‘day_of_week’] 并使用 datetime 来确定这一天属于一周中的哪一天。

然后我创建了另一列。['Is_weekend'] 确定当天是否在周末:

e8073eabca76413c0961f265bbfc656a.png

然后我将列 [‘is_weekend’] 乘以 1 将其转换为整数:

d46b141de06b379f958ba86f78bfff99.png

我使用 datetime 库创建了三个新列,[‘year’]、[‘month’] 和 [‘day’]:

c4a87629fcd8494e75cf24db6d1e417a.png

一旦确定了年月日,我就可以检查哪些天是假期。我做的第一件事是确定这一天是否落在 12 月 25 日,并将这些数据放入布尔列 [‘xmas1’],然后将其转换为整数:

63c7be35c0153f5d1c1351c3c06a9a52.png

然后我按照上面使用的相同格式查看相关日期是否为 12 月 26 日,并将该信息放入新创建的列 [‘xmas2’]。

3ff7256bdb3ade57b43882ee8e5c7dc4.png

我还检查了一天是否在新年并将此信息放在创建的列中,[‘new_year’]:

a5ec770efe2caab336e676739103f3fe.png

找出一天是否是复活节有点棘手,因为复活节并不是固定的日期:

d3b6a53c2994cca1491749389a5d3bbb.png

一旦假期被放在适当的列中,我使用 sklearn 并创建了一个 for 循环来对所有属于 dtype 对象的列进行顺序编码:

1320f6f4a90ec1c113de34c3eab3ec7b.png

然后我使用 datetime 将日期转换为新创建的列 [‘date_num’] 中的数字,然后将此数字转换为整数:

cdb93873e64f051b3a81f0070e08bcad.png

然后我删除了 [‘date’] 和 [‘year’] 列,因为它们在进行预测时不会提供任何有价值的信息:

8bb778b707583e08dfa167744607cf8a.png

下面定义 X、y 和 X_test 变量。y 变量是目标,X 变量由combi 到train 的长度组成,X_test 变量由combi 从train 的长度到末尾组成:

249fd1e1e7625ee56fabcbe53288e7c3.png

然后我使用 sklearn 的 train_test_split 将 X 和 y 变量分成训练和验证集:

7d2d2b129226583d139608fd7c35dbdf.png

然后我定义了模型,在这个例子中我决定使用 sklearn 的 HistGradientBoostingRegressor。(只使用了默认值,但如果我也使用了 grid_search_cv,我的分数可能会更高。)

fa0a549a259a3194f7051dfb1784758d.png

然后我在验证集上预测:

c10ae61cc05846e05d3a143db5688efa.png

我检查了指标。理想情况下,分数应尽可能低:

2ec8556e23ff50248b5eeb95860189ef.png

我使用 matplotlib 绘制预测值与真实值的关系图:

7b9ac1008de1f5da02e32f7bd792ca6c.png

然后我在测试集上预测:

99163e74e69d8fc9f4d68f45f64cad2d.png

一旦我对测试集进行了预测,我就可以提交的数据了:

ed3c89b2edbbcd3301d998037a25fe33.png

我取得的分数,可以从下面的屏幕截图中看出:

b9ba6c2a99656b40225589433dfc62ea.png

总而言之,我只是在一天内完成了这个竞赛问题的程序,但是我可以做一些事情来提高我的分数,例如更改我用来删除异常值的公式以及使用 GridSearchCV 来确定要使用的最佳参数。我还可以加入更多节日。

我不得不说,很高兴使用不会使我的计算机崩溃的较小数据集。

这篇文章的代码可以在我的个人 Kaggle 帐户中找到,链接在这里:

https://www.kaggle.com/tracyporter/jan-22-tabular-hist-grad-boost-reg?scriptVersionId=84230226

本文作者:Tracyrenee

670e41d3cea8ffdf1444c44b91f745a7.png

这篇关于Kaggle Tabular Playground Series - Jan 2022 的baseline和日期特征处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900967

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Go Playground 在线编程环境

For all examples in this and the next chapter, we will use Go Playground. Go Playground represents a web service that can run programs written in Go. It can be opened in a web browser using the follow

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

使用协程实现高并发的I/O处理

文章目录 1. 协程简介1.1 什么是协程?1.2 协程的特点1.3 Python 中的协程 2. 协程的基本概念2.1 事件循环2.2 协程函数2.3 Future 对象 3. 使用协程实现高并发的 I/O 处理3.1 网络请求3.2 文件读写 4. 实际应用场景4.1 网络爬虫4.2 文件处理 5. 性能分析5.1 上下文切换开销5.2 I/O 等待时间 6. 最佳实践6.1 使用 as

Level3 — PART 3 — 自然语言处理与文本分析

目录 自然语言处理概要 分词与词性标注 N-Gram 分词 分词及词性标注的难点 法则式分词法 全切分 FMM和BMM Bi-direction MM 优缺点 统计式分词法 N-Gram概率模型 HMM概率模型 词性标注(Part-of-Speech Tagging) HMM 文本挖掘概要 信息检索(Information Retrieval) 全文扫描 关键词