向量数据库Chroma初步了解学习记录

2024-04-13 00:52

本文主要是介绍向量数据库Chroma初步了解学习记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、Chroma是什么?

二、使用步骤

1.安装

2.连接Chroma

内存模式

client模式

Server模式

3.创建数据集

4.写入数据

5.查询数据

 6.完整代码

7.更多参考

三、瞅瞅chroma之sqlite

总结


前言

大模型很强大,但是大模型也存在知识的局限性,即大模型的知识受限于大模型训练日期,大模型的知识是有截止日期的,不是实时的;再一个有些数据是私有的,大模型也无从知晓。

那么RAG就有了用武之地。而Rag这块就不得不提到向量数据库。

虽然传统数据库也可以进行数据查询检索,但是传统数据库是基于关键词,是没有语义理解的。而向量数据库可以进行语义理解,本质上其实是将语言文字做了向量化,即语义空间,语义相近的向量信息也接近。

向量数据库目前也有很多产品,入门简单的首推Chroma,今天就介绍下


一、Chroma是什么?

ChromaDB(也称为Chroma)是一个开源的向量数据库,主要用于AI和机器学习场景。它的主要功能是存储和查询向量数据,这些数据通常是通过嵌入(embedding)算法从文本、图像等数据转换而来的。ChromaDB的设计目标是简化大模型应用的构建过程,允许开发者轻松地将知识、事实和技能等文档整合进大型语言模型(LLM)中。

ChromaDB的特点包括:

  1. 轻量级: 它是一个基于向量检索库实现的轻量级向量数据库。
  2. 易用性: 提供简单的API,易于集成和使用。
  3. 功能丰富: 支持存储嵌入及其元数据、嵌入文档和查询、搜索嵌入等功能。
  4. 集成: 可以直接插入LangChain、LlamaIndex、OpenAI等。
  5. 多语言支持: 包括Python和JavaScript客户端SDK。
  6. 开源: 采用Apache 2.0开源许可。

ChromaDB的一些限制包括目前只支持CPU计算,不支持GPU加速,且功能相对简单。不过,它计划未来推出托管产品,提供无服务器存储和检索功能,支持向上和向下扩展,让开发者更易于使用。

二、使用步骤

1.安装

ChromaDB的安装简单,可以通过pip或npm进行安装。在Python中,可以通过运行pip install chromadb来安装ChromaDB。

2.连接Chroma

内存模式

数据存在内存,程序运行完数据也就没了

import chromadb
from chromadb.config import Settingschroma_client = chromadb.Client(Settings(allow_reset=True))# 为了演示,实际不需要每次 reset()
# chroma_client.reset()

client模式

直接连接本地数据库文件,类似sqlite(看了下,Chroma底层存储就是基于sqlite,后面可以简单说下)

import chromadb
# chroma_client = chromadb.Client()
chroma_client = chromadb.PersistentClient(path="E:\Data\chroma\mydb.db")

Server模式

cmd

chroma run --path E:\Data\chroma\test

这个时候会以命令中指定的路径,创建数据库文件,并启动Chroma服务

回到代码

​import chromadb
chroma_client = chromadb.HttpClient(host='localhost', port=8000)

3.创建数据集

collection类似关系型数据库的表

collection = chroma_client.get_or_create_collection(name=collection_name)

4.写入数据

collection.add(# embeddings=self.embedding_fn(documents),  # 每个文档的向量documents=documents,  # 文档的原文ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id)

embeddings参数是文档的向量,这里一般需要调用大模型的embedding模型接口

如果不设置,那么会使用内置的embedding模型

5.查询数据

res=collection.query(query_texts=["查询内容"],n_results=5)

 6.完整代码

import chromadb# collection名称
collection_name="test_01"def init_db_client():"""初始化数据库客户端"""chroma_client = chromadb.HttpClient(host='localhost', port=8000)return chroma_clientdef create_collection(collection_name):"""创建collection"""chroma_client = init_db_client()collection=chroma_client.get_or_create_collection(name=collection_name)return collectiondef add_documents(collection, documents):"""写入数据"""collection.add(# embeddings=self.embedding_fn(documents),  # 每个文档的向量documents=documents,  # 文档的原文ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id)def db_test():collection = create_collection(collection_name)datas=["小明喜欢吃苹果", "小红喜欢吃榴莲","小明的女朋友是小丽","王老师是一个好老师","小李喜欢吃香蕉","小王的男朋友是大帅哥"]add_documents(collection, datas)# 查询数据res=collection.query(query_texts=["谁是老师"],n_results=5)print(res)db_test()

7.更多参考

向量数据库Chroma极简教程 - 知乎 (zhihu.com)icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/665715823?utm_id=0

三、瞅瞅chroma之sqlite

看下chroma数据库文件可以发现其数据库实际名称是:chroma.sqlite3

然后我试着用sqlite数据库工具是可以打开这个数据库文件的,有一些固化的表,随便看了下,也是可以找到我写入的数据的。

比如:

collections:新建一个collection这里就有一条记录

embedding_fulltext_search:我写入的数据,这里都有

embedding_fulltext_search_content:同上,不过多了一列id

embedding_fulltext_search_data:这个表数据做编码处理了

embedding_metadata:我写入的数据,这里都有,不过又多了几列


总结

以上就是今天要讲的内容,本文主要对chroma向量数据库进行了基本介绍,然后又介绍了chroma的安装、连接、创建数据、写入数据、查询数据等。

这篇关于向量数据库Chroma初步了解学习记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898708

相关文章

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

如何通过try-catch判断数据库唯一键字段是否重复

《如何通过try-catch判断数据库唯一键字段是否重复》在MyBatis+MySQL中,通过try-catch捕获唯一约束异常可避免重复数据查询,优点是减少数据库交互、提升并发安全,缺点是异常处理开... 目录1、原理2、怎么理解“异常走的是数据库错误路径,开销比普通逻辑分支稍高”?1. 普通逻辑分支 v

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

MybatisPlus中removeById删除数据库未变解决方案

《MybatisPlus中removeById删除数据库未变解决方案》MyBatisPlus中,removeById需实体类标注@TableId注解以识别数据库主键,若字段名不一致,应通过value属... 目录MyBATisPlus中removeBypythonId删除数据库未变removeById(Se