数字IC/FPGA——锁存器/触发器/寄存器

2024-04-12 19:12

本文主要是介绍数字IC/FPGA——锁存器/触发器/寄存器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要介绍以下几点:

  • 什么是触发器和锁存器
  • 门电路和触发器的区别
  • 什么是电平钟控触发器
  • 电平钟控触发器触发器和锁存器的区别
  • 触发器的分类方式:逻辑功能、触发方式、电路结构、存储数据原理、构成触发器的基本器件
  • 寄存器
  • 利用移位寄存器实现串并转换或并串转换

目录

    • 一、触发器的基本概念
    • 二、触发器的分类及原理
      • 1.RS触发器
        • (1)与非门RS触发器
        • (2)或非门RS触发器
      • 2.电平触发钟控触发器
        • (1)钟控RS触发器
      • (2)D触发器
      • (3)钟控JK触发器
        • (4)钟控T触发器
      • 3.边沿触发器
        • (1)基本概念
        • (2)触发器的应用
    • 三、寄存器
      • 1.基本结构
        • (1)电平触发数据寄存器
        • (2)边沿触发数据寄存器
      • 2.移位寄存器
        • (1)基本结构
        • (2)可预置移位寄存器
        • (3)四位通用移位寄存器74LS194
        • (4)利用移位寄存器实现串/并转换
        • (5)利用移位寄存器实现并/串转换

一、触发器的基本概念

触发器(Flip-Flop)是一种具有记忆功能、可以存储二进制信息的双稳态电路,它是组成时序逻辑电路的基本单元,也是最基本的时序电路。

同时也看一下锁存器的概念:

锁存器是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值。简单而言,锁存器的输入有数据信号和使能信号,当处于使能状态时,输出随着输入变化而变化,当不处于使能状态时,输入信号怎么变化都不会影响输出

双稳态电路的特点是:在没有外来触发信号的作用下,电路始终处于原来的稳定状态。在外加输入触发信号作用下,双稳态电路从一个稳定状态翻转到另一个稳定状态。由于它具有两个稳定状态,故称为双稳态电路。

组合逻辑电路的基本单元是门电路。时序逻辑电路的基本单元是触发器。门电路某一时刻的输出信号完全取决于该时刻的输入信号,无记忆功能。触发器具有记忆功能,能够在无信号的情况下,保持上一次的信号。

二、触发器的分类及原理

触发器可以按照逻辑功能、触发方式、电路结构、存储数据原理、构成触发器的基本器件进行分类,详细如下:

分类标准触发器类型
逻辑功能RS触发器、D触发器、JK触发器、T/ T’触发器
触发方式电平触发器、边沿触发器和主从(脉冲)触发器
电路结构基本RS触发器(锁存器)和钟控触发器
存储数据原理静态触发器和动态触发器
构成触发器的基本器件双极型触发器和MOS型触发器

1.RS触发器

(1)与非门RS触发器

下图是用两个与非门构成的基本RS触发器,它具有两个互补的输出端Q和Q,一般用Q端的逻辑值来表示触发器的状态。

在这里插入图片描述

RS触发器的特征方程:

{ Q n + 1 = S ˉ + R Q R + S = 1 \left\{\begin{array}{l}Q^{n+1}=\bar{S}+RQ \\ R+S=1\end{array}\right. {Qn+1=Sˉ+RQR+S=1

各种输入情况下的输出:

RS输出
01复位
10置位
11保持
00禁止此输入
(2)或非门RS触发器

在这里插入图片描述

各种输入情况下的输出:

RS输出
01置位
10复位位
00保持
11禁止此输入

2.电平触发钟控触发器

(1)钟控RS触发器

希望触发器在只有在时钟来临的时候才改变其输出状态,其他时候,触发器维持。钟控RS触发器如图所示,通过增加两个与非门构成了高电平触发的钟控触发器。当CP=0时,Rp=Sp=1,触发器处于保持状态﹔只有在CP=1时,触发器的状态才可能发生变化。钟控RS触发器的电路图如下:

在这里插入图片描述

特征方程:

{ Q n + 1 = R + S ˉ Q R S = 0 \left\{\begin{array}{l}Q^{n+1}=R+\bar{S}Q \\ RS=0\end{array}\right. {Qn+1=R+SˉQRS=0

各种输入情况下的输出:

RS输出
01置位
10复位
00保持
11禁止此输入

(2)D触发器

钟控D触发器的逻辑电路和逻辑符号分别如图所示。

在这里插入图片描述

当CP 为1时,R和S,互补,Sp=D,Rp=D。该触发器特征方程为

Q n + 1 = S ˉ D + R D Q = D + D Q = D Q^{n+1}=\bar{S}_D+R_DQ=D+DQ=D Qn+1=SˉD+RDQ=D+DQ=D

该触发器完成输人信号的保存,也称为数据锁存器,输入端D称为数据输入端。

各种输入情况下的输出:

CPD输出
0×Q
100
111

注意,这里的D触发器是电平触发器。在时钟为高时,输出等于输入。

下面是钟控D触发器的Verilog及Vivado综合后的结果:

module D_FF(input clk,input D,output reg Q);always@(clk)
beginQ<=D;
endendmodule

在这里插入图片描述

在这里插入图片描述

观察电路图我们其实可以发现,电平D触发器实际上就是D锁存器(实际上可以推广到所有的电平钟控触发器)。Vivado电路将其当作LATCH,边沿D触发器才是真正意义上的D触发器。因为从钟控D触发器的逻辑结构图我们可以发现,在时钟CP为1时,输出一样可以随着输入变化,这和锁存器是一样的。

(3)钟控JK触发器

钟控JK触发器的逻辑电路和逻辑符号分别如图所示。

在这里插入图片描述

该触发器特征方程为

Q n + 1 = J Q ˉ + K ˉ Q Q^{n+1}=J\bar{Q}+\bar{K}Q Qn+1=JQˉ+KˉQ

该触发器完成输人信号的保存,也称为数据锁存器,输入端D称为数据输入端。

各种输入情况下的输出:

CPJK输出
0××Q
100Q
1010
1101
111~Q

钟控JK触发器可以构建钟控D触发器,如图所示。

在这里插入图片描述

(4)钟控T触发器

将钟控JK触发器的J和K两个输入连接在一起构成钟控T触发器,它的逻辑电路和逻辑符号分别如图所示。

在这里插入图片描述

该触发器特征方程为

Q n + 1 = T 异或 Q Q^{n+1}=T异或Q Qn+1=T异或Q

各种输入情况下的输出:

CPT输出
0×Q
10Q
11~Q

3.边沿触发器

(1)基本概念

在电平触发方式中,当触发电平有效时,当前输出状态作为现态参与触发器的次态计算。当次态出现后,如果触发电平仍有效,那么次态输出作为新一轮的现态再产生下一个新的次态(如T触发器若T在CP为1时一直为1)。电平触发方式可能使状态在约定电平期间发生多次翻转,也称为空翻。为了防止出现空翻现象,采用边沿触发器。边沿触发器仅在约定的电平边沿(上升沿或下降沿)到达时才可能发生状态变化﹔并且次态仅由该边沿变化瞬间的输入和状态决定;在非约定的边沿和电平期间,输人信号的变化不会引起状态的变化。

钟控触发器通常需要外部对其进行复位(输出变为0)或置位(输出变为1),所以实际的触发器通常有复位R和置位Sa,假定复位和置位信号均为低电平有效。图5.16为常用的边沿D触发器的逻辑符号。

在这里插入图片描述

(2)触发器的应用

可以用于设计二分频电路:

在这里插入图片描述

Verilog代码如下:

module FENPIN_2(input clk,input rst_n,output reg Q);always@(posedge clk or negedge rst_n)
beginif(!rst_n)Q<=0;elseQ<=~Q;
endendmodule

波形图如下:

在这里插入图片描述

三、寄存器

1.基本结构

采用多个D触发器来构成一组保存二进制信息的电路称为寄存器。例如要保存n个数据可以采用n个触发条件相同的D触发器,有两种实现方式,一种是通过电平触发还有一种是通过边沿****触发**,其具体结构如下:

在这里插入图片描述

(1)电平触发数据寄存器

以74LS573(八D数据锁存器)举例,下图是其逻辑符号和内部结构:

在这里插入图片描述

其中,G为锁存信号;OE为输出使能﹔D0-D7为数据输入;Q0~Q7为三态数据输出。其只有在使能信号有效(低电平有效)并且锁存信号也同时有效(高电平有效)时才能够将输入数据映射到输出。之后当使能信号无效并且锁存信号为低时,将数据所存下来保持不变。详见下表:

~OEGD0…D7Q0~Q7(次态)
1××z…z
01d0~d7d0~d7
00×Q0~Q7

需要注意的是,当使能信号无效时,三态输出为高阻态。

(2)边沿触发数据寄存器

以74LS574(八D触发器)举例,下图是其逻辑符号和内部结构。

在这里插入图片描述

只有当时钟上升沿到达并且使能信号有效时才会对数据进行更新,否则在使能信号有效的其他时刻对维持原有输出。详见下表:

~OEGD0…D7Q0~Q7(次态)
1××z…z
0d0~d7d0~d7
0非↑×Q0~Q7

2.移位寄存器

(1)基本结构

若干个D触发器级联构成的触发器组成为移位寄存器,能够寄存串行的二进制信息。其结构如下图:

在这里插入图片描述

数据从S输入,每过一个时钟周期接收一位数据保存在D触发器内。

(2)可预置移位寄存器

将D触发器的数据输入端连接一个2选1数据选择器,两路数据为前级寄存器的输出和并行输入的一位数据,在原有功能的基础上还实现了对寄存器输出的置位。下图是其逻辑符号和内部结构:

在这里插入图片描述

当LD=0时,与基本移位寄存器的功能一致;

当LD=1时,寄存器的输出Q(次态)=D;

(3)四位通用移位寄存器74LS194

74LS194是四位通用移存器,具有左移、右移、并行置数、保持、清除等多种功能。其逻辑符号如图所示,其中,D0~D3是并行数据输入端;Cr是低电平有效的异步清零端;SR和SL分别是右移和左移的串行数码输入端;S1和S0工作方式控制端,其组合00 为保持、01为右移、10为左移、11为置数

在这里插入图片描述

其功能表如下:

在这里插入图片描述

注:图中左移时的S1S0标注错误,应为10

主要分为以下几点:

  • Cr为0时,对输出进行复位
  • Cr=1,S1S0=00时保持输出不变;
  • Cr=1,S1S0=11时将输出置数为D0~D3;
  • Cr=1,S1S0=01并且在时钟上升沿到来时进行右移
  • Cr=1,S1S0=10并且在时钟上升沿到来时进行右移
(4)利用移位寄存器实现串/并转换

七位串并转换电路图如下:

在这里插入图片描述

Cr为初始清零信号;CP为移位时钟;d为串行数据输入;Q0~Q6为并行输出;Z为转换结束标志输出。

数据d6d0从数据输入端SR输入(假设d0先输入),并行数据从Q0Q6输出。D0接0作为标志,D1~D7接1。

工作流程如下图:

在这里插入图片描述

在这里插入图片描述

步骤如下:

  • 复位:所有输出为0,Z为1
  • 置数,数据输出为(0111_1111),其中Q7接非门到Z,Z变为0
  • 上升沿到来输入数据开始右移,Q0输出d
  • 一直右移直到之前置数的Q0的0右移到Q7(第8个时钟上升沿),此时Z变为1表示移位结束,而第一个输入数据“a”此时在Q6输出。
  • 置数跳回到第二步

置数一定要有特殊位(只有一个1或一个0),才能有标志表示转换完成。

(5)利用移位寄存器实现并/串转换

七位并转串电路如图所示:

在这里插入图片描述

并行数据d6~d0,从预置端输人,串行数据由F端输出,标志码1在74LS194的D0端。表5.13为七位并入串出的操作过程。

由于标志码在D0,之后的几拍会从Q0一拍一拍传递到Q2,在这个过程中因为或非门的存在Z一直会为0,知道标志位传递到Q7(第八拍)表示并串转换结束。

工作流程如下:

在这里插入图片描述

步骤如下:

  • 复位:所有输出为0,Z为1
  • 置数,数据输出为1abcdefg(对应结构图中从左到右的顺序),其中前7个数据的或非输入到Z,Z变为0
  • 上升沿到来输入数据开始右移,F输出第八个数据口的数据(从左到右)
  • 一直右移直到之前置数的Q0的1右移到第八个数据口(第8个时钟上升沿),此时前期个输出全部变为0,或非后结果为1,Z变为1表示移位结束。
  • 置数跳回到第二步

这篇关于数字IC/FPGA——锁存器/触发器/寄存器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897996

相关文章

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

usaco 1.2 Name That Number(数字字母转化)

巧妙的利用code[b[0]-'A'] 将字符ABC...Z转换为数字 需要注意的是重新开一个数组 c [ ] 存储字符串 应人为的在末尾附上 ‘ \ 0 ’ 详见代码: /*ID: who jayLANG: C++TASK: namenum*/#include<stdio.h>#include<string.h>int main(){FILE *fin = fopen (

AIGC6: 走进腾讯数字盛会

图中是一个程序员,去参加一个技术盛会。AI大潮下,五颜六色,各种不确定。 背景 AI对各行各业的冲击越来越大,身处职场的我也能清晰的感受到。 我所在的行业为全球客服外包行业。 业务模式为: 为国际跨境公司提供不同地区不同语言的客服外包解决方案,除了人力,还有软件系统。 软件系统主要是提供了客服跟客人的渠道沟通和工单管理,内部管理跟甲方的合同对接,绩效评估,BI数据透视。 客服跟客人

NC 把数字翻译成字符串

系列文章目录 文章目录 系列文章目录前言 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 描述 有一种将字母编码成数字的方式:‘a’->1, ‘b->2’, … , ‘z->26’。 现在给一串数字,返回有多少种可能的译码结果 import java.u

34465A-61/2 数字万用表(六位半)

34465A-61/2 数字万用表(六位半) 文章目录 34465A-61/2 数字万用表(六位半)前言一、测DC/AC电压二、测DC/AC电流四、测电阻五、测电容六、测二极管七、保存截图流程 前言 1、6位半数字万用表通常具有200,000个计数器,可以显示最大为199999的数值。相比普通数字万用表,6位半万用表具有更高的测量分辨率和更高的测量准确度,适用于精度比较高的测

超级 密码加密 解密 源码,支持表情,符号,数字,字母,加密

超级 密码加密 解密 源码,支持表情,符号,数字,字母,加密 可以将表情,动物,水果,表情,手势,猫语,兽语,狗语,爱语,符号,数字,字母,加密和解密 可以将文字、字母、数字、代码、标点符号等内容转换成新的文字形式,通过简单的文字以不同的排列顺序来表达不同的内容 源码截图: https://www.httple.net/152649.html

FPGA编译与部署方法全方位介绍

FPGA编译与部署是FPGA开发中的核心环节,涉及从代码编写、调试到将设计部署到FPGA硬件的全过程。这个流程需要经过创建项目、编写FPGA VI、模拟调试、编译生成比特流文件,最后将设计部署到硬件上运行。编译的特点在于并行执行能力、定制化硬件实现以及复杂的时钟管理。通过LabVIEW的FPGA模块和NI硬件,可以快速完成开发和部署,尤其适用于复杂控制与高性能数据处理系统。 1. FPG

两个长数字相加

1.编程题目 题目:要实现两个百位长的数字直接相加 分析:因为数字太长所以无法直接相加,所以采用按位相加,然后组装的方式。(注意进位) 2.编程实现 package com.sino.daily.code_2019_6_29;import org.apache.commons.lang3.StringUtils;/*** create by 2019-06-29 19:03** @autho

FPGA开发:条件语句 × 循环语句

条件语句 if_else语句 if_else语句,用来判断是否满足所给定的条件,根据判断的结果(真或假)决定执行给出的两种操作之一。 if(表达式)语句; 例如: if(a>b) out1=int1; if(表达式)         语句1; else         语句2; 例如: if(a>b)out1=int1;elseout1=int2; if(表达式1) 语句1; els

关于字符串转化为数字的深度优化两种算法

最近在做项目,在实际操作中发现自己在VC环境下写的字符串转化为整型的函数还是太过理想化了,或者说只能在window平台下软件环境中运行,重新给大家发两种函数方法: 第一个,就是理想化的函数,在VC环境下充分利用指针的优越性,对字符串转化为整型(同时也回答了某位网友的答案吖),实验检验通过: #include <stdio.h> #include <string.h> int rayatoi(c