2024 MathorCupB 题 甲骨文智能识别中原始拓片单字自动分割与识别研究

本文主要是介绍2024 MathorCupB 题 甲骨文智能识别中原始拓片单字自动分割与识别研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题重述

甲骨文是我国目前已知的最早成熟的文字系统,它是一种刻在龟甲或兽骨上的古老文字。甲骨文具有极其重要的研究价值,不仅对中国文明的起源具有重要意义,也对世界文明的研究有着深远影响。在我国政府的大力推动下,甲骨文研究已经进入一个全新的发展阶段。人工智能和大数据技术被应用于甲骨文全息性研究及数字化工程建设,成为甲骨文信息处理领域的研究热点。

甲骨文拓片图像分割是甲骨文数字化工程的基础问题,其目的是利用数字图像处理和计算机视觉技术,在甲骨文原始拓片图像的复杂背景中提取出特征分明且互不交叠的独立文字区域。它是甲骨文字修复、字形复原与建模、文字识别、拓片缀合等处理的技术基础[2]。然而,甲骨拓片图像分割往往受到点状噪声、人工纹理和固有纹理三类干扰元素的严重影响[3]。且甲骨文图像来源广泛,包括拓片、拍照、扫描、临摹等,不同的图像来源,其干扰元素的影响是不同的。由于缺乏对甲骨文字及其干扰元素的形态先验特征的特殊考量,通用的代表性图像分割方法目前尚不能对甲骨文原始拓片图像中的文字目标和点状噪声、人工纹理、固有纹理进行有效判别,其误分割率较高,在处理甲骨拓片图像时均有一定局限性。如何从干扰众多的复杂背景中准确地分割出独立文字区域,仍然是一个亟待解决的具有挑战性的问题。

图1为一张甲骨文原始拓片的图像分割示例,左图为一整张甲骨文原始拓片,右图即为利用图像分割算法[4]实现的拓片图像上甲骨文的单字分割。甲骨文的同一个字会有很多异体字,这无疑增加了 甲骨文识别的难度,图2展示了甲骨文中“人”字的不同异体字。

问题一

问题1:对于附件1(Pre test 文件夹)给定的三张甲骨文原始拓片图片进行图像预处理,提取图像特征,建立甲骨文图像预处理模型,实现对甲骨文图像千扰元素的初步判别和处理。

解决思路

针对问题一,我们对附件一的甲骨文图像数据进行数据预处理

包括但不限于:

尺寸调整:将图像调整为模型要求的输入尺寸,通常是正方形或者某个固定的长宽比。

归一化:将图像的像素值缩放到固定范围内,例如0,1或−1,1,以便于模型的训练。

数据增强:通过随机旋转、裁剪、翻转、变换亮度和对比度等方式来增加训练数据的多样性,从而提高模型的泛化能力。

图像增强:对图像进行增强操作,如调整亮度、对比度、锐度、颜色等,以增强图像的特征。

解题代码(python)

import cv2
import numpy as np
import torch
import matplotlib.pyplot as plt# 读取图像
image_path1 = r'data\1_Pre_test\h02060.jpg'
image_path2 = r'data\1_Pre_test\w01637.jpg'
image_path3 = r'data\1_Pre_test\w01870.jpg'
image1 = cv2.imread(image_path1)
image2 = cv2.imread(image_path2)
image3 = cv2.imread(image_path3)# 定义目标尺寸
target_size = (416, 416)  # YOLOv5 推荐的尺寸# 调整大小
resized_image1 = cv2.resize(image1, target_size)
resized_image2 = cv2.resize(image2, target_size)
resized_image3 = cv2.resize(image3, target_size)# 将图像归一化为 [0, 1]
normalized_image = []
normalized_image.append(resized_image1.astype(np.float32) / 255.0)
normalized_image.append(resized_image2.astype(np.float32) / 255.0)
normalized_image.append(resized_image3.astype(np.float32) / 255.0)
# 如果需要旋转,可以在这里进行旋转操作# 将图像转换为 PyTorch 的 Tensor 格式,并添加批次维度
tensor_image = torch.tensor(normalized_image[0]).permute(2, 0, 1).unsqueeze(0)# 现在 tensor_image 就是你所需的输入数据,准备用于 YOLOv5 模型
plt.imshow(normalized_image[1])
plt.axis('off')
plt.show()

问题二

 解题思路

针对问题二,基于yolov5模型,利用附件2中的数据对模型进行微调,使其具备单字检测分割的能力。我们将部分分割结果可视化,验证模型分割能力。

解题代码

待更新

问题三

解题思路

针对问题三,利用第二问得到的检测分割模型,在附件三测试集上对测试数据进行检测分割,并保存结果到附件Test_results.xlsx

解题代码

待更新

问题四

解题思路

针对问题四,附件四给出部分甲骨文图像及其对应的简体中文,我们建立inception_v3分类模型,通过训练数据对模型进行微调。将得到的在甲骨文文字识别任务上微调后的inception_v3模型对测试集数据进行文字识别。将识别结果保存,写入论文。

解题代码

待更新

资料获取

提供2024MathorCupBC题的思路分析与代码,欢迎进群讨论:953799264

B题目思路代码获取:http://app.niucodata.com/mianbaoduo/recommend.php?id=59179

B题目成品论文获取:http://app.niucodata.com/mianbaoduo/recommend.php?id=59182

这篇关于2024 MathorCupB 题 甲骨文智能识别中原始拓片单字自动分割与识别研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897668

相关文章

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、