从库延迟案例分析

2024-04-12 12:44
文章标签 分析 案例 延迟 从库

本文主要是介绍从库延迟案例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景介绍

近来一套业务系统,从库一直处于延迟状态,无法追上主库,导致业务风险较大。从资源上看,从库的CPU、IO、网络使用率较低,不存在服务器压力过高导致回放慢的情况;从库开启了并行回放;在从库上执行show processlist看到没有回放线程阻塞,回放一直在持续;解析relay-log日志文件,发现其中并没大事务回放。

过程分析

现象确认

收到运维同事的反馈,有一套从库延迟的非常厉害,提供了show slave status延迟的截图信息

file

持续观察了一阵show slave status的变化,发现pos点位信息在不停的变化,Seconds_Behind_master也是不停的变化的,总体趋势还在不停的变大。

资源使用

观察了服务器资源使用情况,可以看到占用非常低

file

观察从库进程情况,基本上只能看到有一个线程在回放工作

file

并行回放参数说明

在主库设置了binlog_transaction_dependency_tracking=WRITESET

在从库设置了slave_parallel_type=LOGICAL_CLOCKslave_parallel_workers=64

error log日志对比

从error log中取并行回放的日志进行分析

$ grep 010559 100werror3306.log | tail -n 3
2024-01-31T14:07:50.172007+08:00 6806 [Note] [MY-010559] [Repl] Multi-threaded slave statistics for channel 'cluster': seconds elapsed = 120; events assigned = 3318582273; worker queues filled over overrun level = 207029; waite
d due a Worker queue full = 238; waited due the total size = 0; waited at clock conflicts = 348754579743300 waited (count) when Workers occupied = 34529247 waited when Workers occupied = 768473697132002024-01-31T14:09:50.078829+08:00 6806 [Note] [MY-010559] [Repl] Multi-threaded slave statistics for channel 'cluster': seconds elapsed = 120; events assigned = 3319256065; worker queues filled over overrun level = 207029; waite
d due a Worker queue full = 238; waited due the total size = 0; waited at clock conflicts = 348851330164000 waited (count) when Workers occupied = 34535857 waited when Workers occupied = 768664198419002024-01-31T14:11:50.060510+08:00 6806 [Note] [MY-010559] [Repl] Multi-threaded slave statistics for channel 'cluster': seconds elapsed = 120; events assigned = 3319894017; worker queues filled over overrun level = 207029; waite
d due a Worker queue full = 238; waited due the total size = 0; waited at clock conflicts = 348943740455400 waited (count) when Workers occupied = 34542790 waited when Workers occupied = 76890229805500

上述信息的详细解释,可以参考MTS性能监控你知道多少

去掉了发生次数比较少的统计,显示了一些关键数据的对比

file

可以发现自然时间120,回放的协调线程有90多秒由于无法并行回放而进入等待,有近20秒是由于没有空闲的work线程进入等待,折算下来协调线程工作的时间只有10秒左右。

并行度统计

众所周知,mysql从库并行回放主要依赖于binlog中的last_commmitted来做判断,如果事务的last_committed相同,则基本上可以认为这些事务可以并行回放,下面从环境中获取一个relay log进行并行回放的大概统计

$ mysqlsqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1
; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>=1 && $2 <11){sum+=$2}} END {print sum}' 
235703
$ mysqlsqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1
; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>10){sum+=$2}} END {print sum}'
314694

上述第一条命令,是统计last_committed相同的事务数量在1-10个,即并行回放程度较低或者是无法并行回放,这些事务总数量为235703,占43%,详细解析并行回放度比较低的事务分布,可以看出这部分last_committed基本上都是单条的,都需要等待先序事务回放完成后,自己才能进行回放,这就会造成前面日志中观察到的协调线程等待无法并行回放而进入等待的时间比较长的情况

$ mysqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>=1 && $2 <11) {print $2}}' | sort | uniq -c200863 117236 298 313 43 51 7

第二条命令统计last_committed相同的事务数量超过10个的总事务数,其数量为314694,占57%,详细解析了这些并行回放度比较高的事务,可以看到每一组是在6500~9000个事务数间

$ mysqlsqlbinlog --no-defaults 046638 |grep -o 'last_committed.*' | sed 's/=/ /g' | awk '{print $2}' |sort -n | uniq -c |awk 'BEGIN {print "last_commited group_count Percentage"} {count[$2]=$1
; sum+=$1} END {for (i in count) printf "%d %d %.2f%%\n", i, count[i], (count[i]/sum)*100|"sort -k 1,1n"}' | awk '{if($2>11){print $0}}' | column -t
last_commited  group_count  Percentage
1              7340         1.33%
11938          7226         1.31%
23558          7249         1.32%
35248          6848         1.24%
46421          7720         1.40%
59128          7481         1.36%
70789          7598         1.38%
82474          6538         1.19%
93366          6988         1.27%
104628         7968         1.45%
116890         7190         1.31%
128034         6750         1.23%
138849         7513         1.37%
150522         6966         1.27%
161989         7972         1.45%
175599         8315         1.51%
189320         8235         1.50%
202845         8415         1.53%
218077         8690         1.58%
234248         8623         1.57%
249647         8551         1.55%
264860         8958         1.63%
280962         8900         1.62%
297724         8768         1.59%
313092         8620         1.57%
327972         9179         1.67%
344435         8416         1.53%
359580         8924         1.62%
375314         8160         1.48%
390564         9333         1.70%
407106         8637         1.57%
422777         8493         1.54%
438500         8046         1.46%
453607         8948         1.63%
470939         8553         1.55%
486706         8339         1.52%
503562         8385         1.52%
520179         8313         1.51%
535929         7546         1.37%

last_committed机制介绍

主库的参数binlog_transaction_dependency_tracking用于指定如何生成其写入二进制日志的依赖信息,以帮助从库确定哪些事务可以并行执行,即通过该参数控制last_committed的生成机制,参数可选值有COMMIT_ORDER、WRITESET、SESSION_WRITESET。 从下面这段代码,很容易看出来三种参数关系:

1) 基础算法为COMMIT_ORDER 2) WRITESET算法是在COMMIT_ORDER基础上再计算一次 3) SESSION_WRITESET算法是在WRITESET基础上再计算一次

file

由于我的实例设置的是WRITESET,因此关注COMMIT_ORDER算法和的WRITESET算法即可。

COMMIT_ORDER

COMMIT_ORDER计算规则:如果两个事务在主节点上是同时提交的,说明两个事务的数据之间没有冲突,那么一定也是可以在从节点上并行执行的,理想中的典型案例如下面的例子

session-1session-2
BEGINBEGIN
INSERT t1 values(1)
INSERT t2 values(2)
commit (group_commit)commit (group_commit)

但对于MySQL来说,group_commit是内部行为,只要session-1和session-2是同时执行commit,不管内部是否合并为group_commit,两个事务的数据本质上都是没有冲突的;再退一步来讲,只要session-1执行commit之后,session-2没有新的数据写入,两个事务依旧没有数据冲突,依然可以并行复制。

session-1session-2
BEGINBEGIN
INSERT t1 values(1)
INSERT t2 values(2)
commit
commit

对于更多并发线程的场景,可能这些线程不能同时并行复制,但部分事务却可以。以如下一个执行顺序来说,在session-3提交之后,session-2没有新的写入,那么这两个事务是可以并行复制的;而session-3提交后,session-1又插入了一条新的数据,此时无法判定数据冲突,所以session-3和session-1的事务无法并行复制;但session-2提交后,session-1之后没有新数据写入,所以session-2和session-1又可以并行复制。因此,这个场景中,session-2分别可以和session-1,session-3并行复制,但3个事务无法同时并行复制。

session-1session-2session-3
BEGINBEGINBEGIN
INSERT t1 values(1)INSERT t2 values(1)INSERT t3 values(1)
INSERT t1 values(2)INSERT t2 values(2)
commit
INSERT t1 values(3)
commit
commit
WRITESET

实际上是commit_order+writeset的组合,会先通过commit_order计算出一个last_committed值,然后再通过writeset计算一个新值,最后取两者间的小值作为最终事务gtid的last_committed。

在MySQL中,writeset本质上是对 schema_name + table_name + primary_key/unique_key 计算的hash值,在DML执行语句过程中,通过binlog_log_row生成row_event之前,会将DML语句中所有的主键/唯一键都单独计算hash值,并加入到事务本身的writeset列表中。而如果存在无主键/唯一索引的表,还会对事务设置has_missing_keys=true。

参数设置为WRITESET,但是并不一定就能使用上,其限制如下

1) 非DDL语句或者表具有主键或者唯一键或者空事务 2) 当前session使用的hash算法与hash map中的一致 3) 未使用外键 4) hash map的容量未超过binlog_transaction_dependency_history_size的设置 以上4个条件均满足时,则可以使用WRITESET算法,如果有任意一个条件不满足,则会退化为COMMIT_ORDER计算方式

file

具体WRITESET算法如下,事务提交时:

  1. last_committed设置为m_writeset_history_start,此值为m_writeset_history列表中最小的sequence_number

  2. 遍历事务的writeset列表

    a 如果某个writeset在全局m_writeset_history中不存在,构建一个pair<writeset, 当前事务的sequence_number>对象,插入到全局m_writeset_history列表中

    b. 如果存在,那么last_committed=max(last_committed, 历史writeset的sequence_number值),并同时更新m_writeset_history中该writeset对应的sequence_number为当前事务值

  3. 如果has_missing_keys=false,即事务所有数据表均包含主键或者唯一索引,则最后取commit_order和writeset两种方式计算的最小值作为最终的last_committed值

file

TIPS:基于上面WRITESET规则,就会出现后提交的事务的last_committed比先提交的事务还小的情况

结论分析

结论描述

根据WRITESET的使用限制,对relay-log及事务中涉及到的表结构进行了对比,分析单last_committed的事务组成发现如下两种情况:

1) 单last_committed的事务中涉及到的数据和sequence_number存在数据冲突 2) 单last_committed的事务中涉及到的表存在无主键的情况,而且这种事务特别多

从上面的分析中可以得出结论:无主键表的事务太多,导致WRITESET退化为COMMIT_ORDER,而由于数据库为TP应用,事务都快速提交,多个事务提交无法保证在一个commit周期内,导致COMMIT_ORDER机制产生的last_committed重复读很低。从库也就只能串行回放这些事务,引起回放延迟。

优化措施

1) 从业务侧对表做改造,在允许的情况下给相关表都添加上主键。 2) 尝试调大参数binlog_group_commit_sync_delay、binlog_group_commit_sync_no_delay_count从0修改为10000,由于特殊环境限制,该调整并未生效,不同的场景可能会有不同的表现。


Enjoy GreatSQL :)

关于 GreatSQL

GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

image

社区有奖建议反馈: https://greatsql.cn/thread-54-1-1.html

社区博客有奖征稿详情: https://greatsql.cn/thread-100-1-1.html

(对文章有疑问或者有独到见解都可以去社区官网提出或分享哦~)

技术交流群:

微信&QQ群:

QQ群:533341697

微信群:添加GreatSQL社区助手(微信号:wanlidbc )好友,待社区助手拉您进群。

这篇关于从库延迟案例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897164

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit