如何使用pgvector为RDS PostgreSQL构建专属ChatBot?

2024-04-12 08:44

本文主要是介绍如何使用pgvector为RDS PostgreSQL构建专属ChatBot?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

越来越多的企业和个人希望能够利用LLM和生成式人工智能来构建专注于其特定领域的具备AI能力的产品。目前,大语言模型在处理通用问题方面表现较好,但由于训练语料和大模型的生成限制,对于专业知识和时效性方面存在一些局限。在信息时代,企业的知识库更新频率越来越高,而企业所拥有的垂直领域知识库(如文档、图像、音视频等)可能是未公开或不可公开的。因此,对于企业而言,如果想在大语言模型的基础上构建属于特定垂直领域的AI产品,就需要不断将自身的知识库输入到大语言模型中进行训练。

目前有两种常见的方法实现:

  • 微调(Fine-tuning):通过提供新的数据集对已有模型的权重进行微调,不断更新输入以调整输出,以达到所需的结果。这适用于数据集规模不大或针对特定类型任务或风格进行训练,但训练成本和价格较高。
  • 提示调整(Prompt-tuning):通过调整输入提示而非修改模型权重,从而实现调整输出的目的。相较于微调,提示调整具有较低的计算成本,需要的资源和训练时间也较少,同时更加灵活。

基于RDS PostgreSQL构建ChatBot的优势如下:

  • 借助RDS PostgreSQL的pgvector插件,可以将实时内容或垂直领域的专业知识和内容转化为向量化的embedding表示,并存储在RDS PostgreSQL中,以实现高效的向量化检索,从而提高私域内容的问答准确性。
  • 作为先进的开源OLTP引擎,RDS PostgreSQL能够同时完成在线用户数据交互和数据存储的任务,例如,它可以用于处理对话的交互记录、历史记录、对话时间等功能。RDS PostgreSQL一专多长的特性使得私域业务的构建更加简单,架构也更加轻便。
  • pgvector插件目前已经在开发者社区以及基于PostgreSQL的开源数据库中得到广泛应用,同时ChatGPT Retrieval Plugin等工具也及时适配了PostgreSQL。这表明RDS PostgreSQL在向量化检索领域具有良好的生态支持和广泛的应用基础,为用户提供了丰富的工具和资源。

本文将以RDS PostgreSQL提供的开源向量索引插件(pgvector)和OpenAI提供的embedding能力为例,展示如何构建专属的ChatBot。

快速体验

阿里云提供云速搭CADT平台模板,该方案模板已预部署了ECS以及RDS PostgreSQL数据库,并且预安装了前置安装包,能够帮助您快速体验专属ChatBot,您可以前往云速搭CADT控制台,参考大模型结合RDS PostgreSQL数据库构建企业级专属Chatbot进行体验。

前提条件

  • 已创建RDS PostgreSQL实例且满足以下条件:
    • 实例大版本为PostgreSQL 14或以上。
    • 实例内核小版本为20230430或以上。
  • 说明
    如需升级实例大版本或内核小版本,请参见升级数据库大版本或升级内核小版本。
  • 本文展示的专属的ChatBot基于RDS PostgreSQL提供的开源插件pgvector,请确保已完全了解其相关用法及基本概念,更多信息,请参见高维向量相似度搜索(pgvector)。
  • 本文展示的专属的ChatBot使用了OpenAI的相关能力,请确保您具备Secret API Key,并且您的网络环境可以使用OpenAI,本文展示的代码示例均部署在新加坡地域的ECS中。
  • 本文示例代码使用的Python语言,请确保已具备Python开发环境,本示例使用的Python版本为3.11.4,使用的开发工具为PyCharm 2023.1.2

相关概念

嵌入

嵌入(embedding)是指将高维数据映射为低维表示的过程。在机器学习和自然语言处理中,嵌入通常用于将离散的符号或对象表示为连续的向量空间中的点。

在自然语言处理中,词嵌入(word embedding)是一种常见的技术,它将单词映射到实数向量,以便计算机可以更好地理解和处理文本。通过词嵌入,单词之间的语义和语法关系可以在向量空间中得到反映。

OpenAI提供Embeddings能力。

实现原理

本文展示的专属ChatBot的实现流程分为两个阶段:

第一阶段:数据准备

  1. 知识库信息提取和分块:从领域知识库中提取相关的文本信息,并将其分块处理。这可以包括将长文本拆分为段落或句子,提取关键词或实体等。这样可以将知识库的内容更好地组织和管理。
  2. 调用LLM接口生成embedding:利用LLM(如OpenAI)提供的接口,将分块的文本信息输入到模型中,并生成相应的文本embedding。这些embedding将捕捉文本的语义和语境信息,为后续的搜索和匹配提供基础。
  3. 存储embedding信息:将生成的文本embedding信息、文本分块以及文本关联的metadata信息存入RDS PostgreSQL数据库中。

第二阶段:问答

  1. 用户提问。
  2. 通过OpenAI提供的embedding接口创建该问题的embedding。
  3. 通过pgvector过滤出RDS PostgreSQL数据库中相似度大于一定阈值的文档块,将结果返回。

流程图如下:

image

操作步骤

第一阶段:数据准备

本文以创建RDS PostgreSQL实例文档的文本内容为例,将其拆分并存储到RDS PostgreSQL数据库中,您需要准备自己的专属领域知识库。

数据准备阶段的关键在于将专属领域知识转化为文本embedding,并有效地存储和匹配这些信息。通过利用LLM的强大语义理解能力,您可以获得与特定领域相关的高质量回答和建议。当前的一些开源框架,可以方便您上传和解析知识库文件,包括URL、Markdown、PDF、Word等格式。例如LangChain和OpenAI开源的ChatGPT Retrieval Plugin。LangChain和ChatGPT Retrieval Plugin均已经支持了基于pgvector扩展的PostgreSQL作为其后端向量数据库,这使得与RDS PostgreSQL实例的集成变得更加便捷。通过这样的集成,您可以方便地完成第一阶段领域知识库的数据准备,并充分利用pgvector提供的向量索引和相似度搜索功能,实现高效的文本匹配和查询操作。

  1. 连接PostgreSQL实例。
  2. 创建测试数据库,以rds_pgvector_test为例。
CREATE DATABASE testdb;
  1. 进入测试数据库,并创建pgvector插件。
CREATE EXTENSION IF NOT EXISTS vector;
  1. 创建测试表(本文以rds_pg_help_docs为例),用于存储知识库内容。
CREATE TABLE rds_pg_help_docs (id bigserial PRIMARY KEY, title text,           -- 文档标题description text,         -- 描述doc_chunk text,       -- 文档分块token_size int,       -- 文档分块字数embedding vector(1536));  -- 文本嵌入信息
  1. 为embedding列创建索引,用于查询优化和加速。
CREATE INDEX ON rds_pg_help_docs USING ivfflat (embedding vector_cosine_ops) WITH (lists = 100);
  1. 说明
    向量列创建索引的更多说明,请参见高维向量相似度搜索(pgvector)。
  2. 在PyCharm中,创建项目,然后打开Terminal,输入如下语句,安装如下依赖库。
pip install openai psycopg2 tiktoken requests beautifulsoup4 numpy
  1. 创建.py文件(本文以knowledge_chunk_storage.py为例),拆分知识库文档内容并存储到数据库中,示例代码如下:
    说明
    如下示例代码中,自定义的拆分方法仅仅是将知识库文档内容按固定字数进行了拆分,您可以使用LangChain和OpenAI开源的ChatGPT Retrieval Plugin等开源框架中提供的方法进行拆分。知识库中的文档质量和分块结果对最终的输出的结果有较大的影响。
import openai
import psycopg2
import tiktoken
import requests
from bs4 import BeautifulSoup
EMBEDDING_MODEL = "text-embedding-ada-002"
tokenizer = tiktoken.get_encoding("cl100k_base")
# 连接RDS PostgreSQL数据库
conn = psycopg2.connect(database="<数据库名>",host="<RDS实例连接地址>",user="<用户名>",password="<密码>",port="<数据库端口>")
conn.autocommit = True
# OpenAI的API Key
openai.api_key = '<Secret API Key>'
# 自定义拆分方法(仅为示例)
def get_text_chunks(text, max_chunk_size):chunks_ = []soup_ = BeautifulSoup(text, 'html.parser')content = ''.join(soup_.strings).strip()length = len(content)start = 0while start < length:end = start + max_chunk_sizeif end >= length:end = lengthchunk_ = content[start:end]chunks_.append(chunk_)start = endreturn chunks_
# 指定需要拆分的网页
url = 'https://help.aliyun.com/document_detail/148038.html'
response = requests.get(url)
if response.status_code == 200:# 获取网页内容web_html_data = response.textsoup = BeautifulSoup(web_html_data, 'html.parser')# 获取标题(H1标签)title = soup.find('h1').text.strip()# 获取描述(class为shortdesc的p标签内容)description = soup.find('p', class_='shortdesc').text.strip()# 拆分并存储chunks = get_text_chunks(web_html_data, 500)for chunk in chunks:doc_item = {'title': title,'description': description,'doc_chunk': chunk,'token_size': len(tokenizer.encode(chunk))}query_embedding_response = openai.Embedding.create(model=EMBEDDING_MODEL,input=chunk,)doc_item['embedding'] = query_embedding_response['data'][0]['embedding']cur = conn.cursor()insert_query = '''INSERT INTO rds_pg_help_docs (title, description, doc_chunk, token_size, embedding) VALUES (%s, %s, %s, %s, %s);'''cur.execute(insert_query, (doc_item['title'], doc_item['description'], doc_item['doc_chunk'], doc_item['token_size'],doc_item['embedding']))conn.commit()
else:print('Failed to fetch web page')
  1. 运行python程序。
  2. 登录数据库使用如下命令查看是否已将知识库文档内容拆分并存储为向量数据。
SELECT * FROM rds_pg_help_docs;
  1. image

第二阶段:问答

  1. 在python项目中,创建.py文件(本文以chatbot.py为例),创建问题并与数据库中的知识库内容比较相似度,返回结果。
import openai
import psycopg2
from psycopg2.extras import DictCursor
GPT_MODEL = "gpt-3.5-turbo"
EMBEDDING_MODEL = "text-embedding-ada-002"
GPT_COMPLETIONS_MODEL = "text-davinci-003"
MAX_TOKENS = 1024
# OpenAI的API Key
openai.api_key = '<Secret API Key>'
prompt = '如何创建一个RDS PostgreSQL实例'
prompt_response = openai.Embedding.create(model=EMBEDDING_MODEL,input=prompt,
)
prompt_embedding = prompt_response['data'][0]['embedding']
# 连接RDS PostgreSQL数据库
conn = psycopg2.connect(database="<数据库名>",host="<RDS实例连接地址>",user="<用户名>",password="<密码>",port="<数据库端口>")
conn.autocommit = True
def answer(prompt_doc, prompt):improved_prompt = f"""按下面提供的文档和步骤来回答接下来的问题:(1) 首先,分析文档中的内容,看是否与问题相关(2) 其次,只能用文档中的内容进行回复,越详细越好,并且以markdown格式输出(3) 最后,如果问题与RDS PostgreSQL不相关,请回复"我对RDS PostgreSQL以外的知识不是很了解"文档:\"\"\"{prompt_doc}\"\"\"问题: {prompt}"""response = openai.Completion.create(model=GPT_COMPLETIONS_MODEL,prompt=improved_prompt,temperature=0.2,max_tokens=MAX_TOKENS)print(f"{response['choices'][0]['text']}\n")
similarity_threshold = 0.78
max_matched_doc_counts = 8
# 通过pgvector过滤出相似度大于一定阈值的文档块
similarity_search_sql = f'''
SELECT doc_chunk, token_size, 1 - (embedding <=> '{prompt_embedding}') AS similarity 
FROM rds_pg_help_docs WHERE 1 - (embedding <=> '{prompt_embedding}') > {similarity_threshold} ORDER BY id LIMIT {max_matched_doc_counts};
'''
cur = conn.cursor(cursor_factory=DictCursor)
cur.execute(similarity_search_sql)
matched_docs = cur.fetchall()
total_tokens = 0
prompt_doc = ''
print('Answer: \n')
for matched_doc in matched_docs:if total_tokens + matched_doc['token_size'] <= 1000:prompt_doc += f"\n---\n{matched_doc['doc_chunk']}"total_tokens += matched_doc['token_size']continueanswer(prompt_doc,prompt)total_tokens = 0prompt_doc = ''
answer(prompt_doc,prompt)
  1. 运行Python程序后,您可以在运行窗口看到类似如下的对应答案:
    说明
    您可以对拆分方法以及问题prompt进行优化,以获得更加准确、完善的回答,本文仅为示例。

    image

总结

如果未接入专属知识库,OpenAI对于问题“如何创建一个RDS PostgreSQL实例”的回答往往与阿里云不相关,例如:

image

在接入存储在RDS PostgreSQL数据库中的专属知识库后,对于问题“如何创建一个RDS PostgreSQL实例”,我们将会得到只属于阿里云RDS PostgreSQL数据库的相关回答。

根据上述实践内容,可以看出RDS PostgreSQL完全具备构建基于LLM的垂直领域知识库的能力。

这篇关于如何使用pgvector为RDS PostgreSQL构建专属ChatBot?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896651

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的