【论文阅读——SplitFed: When Federated Learning Meets Split Learning】

2024-04-12 06:36

本文主要是介绍【论文阅读——SplitFed: When Federated Learning Meets Split Learning】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

级别CCFA

1.摘要

联邦学习(FL)和分割学习(SL)是两种流行的分布式机器学习方法。两者都采用了模型对数据的场景;客户端在不共享原始数据的情况下训练和测试机器学习模型。由于机器学习模型的架构在客户端和服务器之间分割,SL提供了比FL更好的模型隐私性。此外,分割模型使SL成为资源受限环境的更好选择。然而,由于在多个客户端之间基于中继进行训练,SL的速度比FL慢。

2.贡献

本文提出了一种名为分割联邦学习(SFL)的新方法,它将这两种方法融合在一起,消除了它们固有的缺点,并采用了一种精细的架构配置,结合差分隐私和PixelDP来增强数据隐私和模型鲁棒性。我们的分析和实证结果表明,(纯)SFL在多个客户端上比SL显著减少了每个全局时期的计算时间,同时提供了类似的测试精度和通信效率。此外,就像SL一样,它在客户端数量增加时的通信效率优于FL。此外,带有隐私和鲁棒性措施的SFL在扩展实验设置下进一步进行了评估

3.目标场景

FL的主要优势在于它允许跨多个客户端并行进行高效的ML模型训练。在FL中,客户端的计算需求和ML训练期间的模型隐私是两个主要问题。(对于一些商业公司的模型,肯定是不能全部下发导数据提供方进行训练的,同时对于客户端服务器配置的要求也比较高)
在SL中,通过切割模型可以使数据公司无法拥有全部模型,同时降低了对于数据公司设备的要求。但SL中的中继式训练会导致客户端资源处于空闲状态,因为一次只有一个客户端与服务器交互;这会导致在许多客户端下训练开销的显著增加。

4.方法

4.1 方法概览

在这里插入图片描述
我们假设模型分为特征提取部分 M c M_c Mc和结果推理部分 M t M_t Mt
这里主要存在3个部分:

  • Client
    • 数据的提供方,将数据通过 M c M_c Mc得到smashed data发送给主服务器。
    • 需要等待服务器进行反向传播,更新本地的 M c M_c Mc
    • 并将 M c ′ M_c' Mc上传到聚合FedServer
    • 等待从FedServer上接收平均后的 M c f e d M_{c}^{fed} Mcfed
    • 用接收后的 M c M_c Mc来提取数据特征
  • Main Server
    • 负责模型的推理和反向传播
  • FedServer
    • 负责 M c M_c Mc的接收、平均和下发

4.2 SFL的几种变体

  • 基于服务器端聚合
    • SFLV1
      • MainServer模型中存在聚合特征部分
    • SFLV2
      • 删除MainServer模型聚合特征部分来增加模型准确性的可能性
  • 基于数据标签分享
    • 将数据标签共享到服务器
      • 基于MPC等技术
    • 不共享任何数据标签到服务器
      • SFL中的ML模型可以被划分为三个部分,假设是一个简单的设置。每个客户端将处理两个客户端模型部分;一个是W的前几层,另一个是W的最后几层和损失计算。W的剩余中间层将在服务器端计算。

6.反思

感觉这个方法真的很酷,但是工程上存在着网络等多种复杂情况。

这篇关于【论文阅读——SplitFed: When Federated Learning Meets Split Learning】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896376

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

bytes.split的用法和注意事项

当然,我很乐意详细介绍 bytes.Split 的用法和注意事项。这个函数是 Go 标准库中 bytes 包的一个重要组成部分,用于分割字节切片。 基本用法 bytes.Split 的函数签名如下: func Split(s, sep []byte) [][]byte s 是要分割的字节切片sep 是用作分隔符的字节切片返回值是一个二维字节切片,包含分割后的结果 基本使用示例: pa

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需