深入浅出 -- 系统架构之日均亿级吞吐量的网关架构(DNS轮询解析)

本文主要是介绍深入浅出 -- 系统架构之日均亿级吞吐量的网关架构(DNS轮询解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前篇关于《Nginx》的文章中曾经提到:单节点的Nginx在经过调优后,可承载5W左右的并发量,同时为确保Nginx的高可用,在文中也结合了Keepalived对其实现了程序宕机重启、主机下线从机顶替等功能。

但就算实现了高可用的Nginx依旧存在一个致命问题:如果项目的QPS超出5W,那么很有可能会导致Nginx被流量打到宕机,然后根据配置的高可用规则,Keepalived会对Nginx重启,但重启后的Nginx依旧无法承载业务带来的并发压力,结果同样会宕机.....

经过如上分析后,明显可看出,如果Nginx面对这种超高并发的情况,就会一直处于「在重启、去重启的路上」这个过程不断徘徊,因此在此背景下,我们需要设计出一套能承载更大流量级别的接入层架构。

不过相对来说,至少90%以上的项目用不上这套接入层架构,因为大部分项目上线后,能够拥有的用户数是很有限的,压根无法产生太高的并发量,所以往往一个Nginx足以支撑系统的访问压力。

不过虽说大家不一定用的上,但不懂两个字我们绝不能说出口,尤其是面试过程中,往往频繁问到的:你是如何处理高并发的? 跟本文有很大的联系,之后被问到时,千万先别回答什么缓存、削峰填谷、熔断限流、分库分表.....等这类的,首先需要先把接入层说清楚,因为如果接入层都扛不住访问压力,流量都无法进到系统,后续这一系列处理手段自然没有意义。

一、亿级吞吐第一战-DNS轮询解析

   对于单节点的Nginx而言,虽然利用Keepalived实现了高可用,但它更类似于一种主从关系,从机在主机正常的情况下,并不能为主机分担访问压力,也就代表着作为主节点的机器,需要凭“一己之力”承载整个系统的所有流量。那么当系统流量超出承载极限后,很容易导致Nginx宕机,所以也需要对Nginx进行横向拓展,那又该如何实现呢?最简单的方式:DNS轮询解析方案。
DNS轮询解析技术算一种较老的方案了,但在如今的大舞台上依旧能够看见它的身影,它源自于DNS的域名多记录解析,在《HTTP/HTTPS》文章中曾聊到过,DNS域名系统本质上是一个大型的分布式K-V数据库,以域名作为Key,以物理服务器的公网IP作为Value,而大多数域名注册商都支持为同一个域名配置多个对应的IP,如下:

如上图所示,为一个域名配置多个映射的IP后,DNS服务器在解析域名请求时,就会依据配置的IP顺序,将请求逐一分配到不同的IP上,也就是《上文》所提及到的轮询调度方式。

借助DNS的轮询解析支持,对Nginx可以轻松实现横向拓展,也就是同一个域名配置的多台物理机,分别都部署一个Nginx节点,每台Nginx节点的配置信息都一样。

好比目前每瞬12W的并发量,配置域名时,映射3台真实Nginx服务器,最终经过DNS轮询解析后,12W的并发请求被均摊到每台Nginx,每个节点分别承载4W的并发请求,通过这种方式就能够完美的解决之前的:单节点Nginx无法承载超高并发量而宕机的问题,如下:
![Nginx水平集群]

同时DNS域名解析,也依旧可以配置调度算法,如Rate权重分配、最少连接数分配、甚至可以按照客户端网络的运营商、客户端所在地区等方式进行解析分配,但仅一小部分的DNS服务器支持。

浅谈DNS域名轮询解析的优劣

这种方式带来的优势极为明显:

无需增加额外的成本即可实现多节点水平集群,利于系统拓展。

但也存在非常大的劣势:

  • ①与其他的负载均衡方案不同,其他的负载方案一般都会自带健康监测机制,但DNS则无法感知,也就是当下游的某服务器宕机,DNS服务器会依旧向其分发请求。
  • ②无法根据服务器的硬件配置,合理的分配客户端请求,大部分DNS服务器只支持最简单的轮询调度。

虽然DNS轮询解析方案存在很大的劣势,但这两个劣势对比其带来的收益可以忽略不计,因为现在云计算技术的发展,多台节点保持相同的配置已不再是难事。同时,由于Nginx本身就会利用KeepalivedVIP机制实现高可用,所以就算某个节点宕机,从机也可顶替上线接管流量,中间只会有很短暂的切换时间。

而且如果DNS将客户端请求分发到某个宕机节点时,客户端看到的结果便是空白页、超时无响应或请求错误的信息,通常情况下,依据用户的习性,都会再次重试,那么客户端再次发出的请求会被轮询解析到其他节点,而从机在这个时间间隔内也能够成功上线接管服务。

这篇关于深入浅出 -- 系统架构之日均亿级吞吐量的网关架构(DNS轮询解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896325

相关文章

关于DNS域名解析服务

《关于DNS域名解析服务》:本文主要介绍关于DNS域名解析服务,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录DNS系统的作用及类型DNS使用的协议及端口号DNS系统的分布式数据结构DNS的分布式互联网解析库域名体系结构两种查询方式DNS服务器类型统计构建DNS域

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

mysql中的服务器架构详解

《mysql中的服务器架构详解》:本文主要介绍mysql中的服务器架构,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、mysql服务器架构解释3、总结1、背景简单理解一下mysqphpl的服务器架构。2、mysjsql服务器架构解释mysql的架

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决