深入浅出 -- 系统架构之日均亿级吞吐量的网关架构(DNS轮询解析)

本文主要是介绍深入浅出 -- 系统架构之日均亿级吞吐量的网关架构(DNS轮询解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在前篇关于《Nginx》的文章中曾经提到:单节点的Nginx在经过调优后,可承载5W左右的并发量,同时为确保Nginx的高可用,在文中也结合了Keepalived对其实现了程序宕机重启、主机下线从机顶替等功能。

但就算实现了高可用的Nginx依旧存在一个致命问题:如果项目的QPS超出5W,那么很有可能会导致Nginx被流量打到宕机,然后根据配置的高可用规则,Keepalived会对Nginx重启,但重启后的Nginx依旧无法承载业务带来的并发压力,结果同样会宕机.....

经过如上分析后,明显可看出,如果Nginx面对这种超高并发的情况,就会一直处于「在重启、去重启的路上」这个过程不断徘徊,因此在此背景下,我们需要设计出一套能承载更大流量级别的接入层架构。

不过相对来说,至少90%以上的项目用不上这套接入层架构,因为大部分项目上线后,能够拥有的用户数是很有限的,压根无法产生太高的并发量,所以往往一个Nginx足以支撑系统的访问压力。

不过虽说大家不一定用的上,但不懂两个字我们绝不能说出口,尤其是面试过程中,往往频繁问到的:你是如何处理高并发的? 跟本文有很大的联系,之后被问到时,千万先别回答什么缓存、削峰填谷、熔断限流、分库分表.....等这类的,首先需要先把接入层说清楚,因为如果接入层都扛不住访问压力,流量都无法进到系统,后续这一系列处理手段自然没有意义。

一、亿级吞吐第一战-DNS轮询解析

   对于单节点的Nginx而言,虽然利用Keepalived实现了高可用,但它更类似于一种主从关系,从机在主机正常的情况下,并不能为主机分担访问压力,也就代表着作为主节点的机器,需要凭“一己之力”承载整个系统的所有流量。那么当系统流量超出承载极限后,很容易导致Nginx宕机,所以也需要对Nginx进行横向拓展,那又该如何实现呢?最简单的方式:DNS轮询解析方案。
DNS轮询解析技术算一种较老的方案了,但在如今的大舞台上依旧能够看见它的身影,它源自于DNS的域名多记录解析,在《HTTP/HTTPS》文章中曾聊到过,DNS域名系统本质上是一个大型的分布式K-V数据库,以域名作为Key,以物理服务器的公网IP作为Value,而大多数域名注册商都支持为同一个域名配置多个对应的IP,如下:

如上图所示,为一个域名配置多个映射的IP后,DNS服务器在解析域名请求时,就会依据配置的IP顺序,将请求逐一分配到不同的IP上,也就是《上文》所提及到的轮询调度方式。

借助DNS的轮询解析支持,对Nginx可以轻松实现横向拓展,也就是同一个域名配置的多台物理机,分别都部署一个Nginx节点,每台Nginx节点的配置信息都一样。

好比目前每瞬12W的并发量,配置域名时,映射3台真实Nginx服务器,最终经过DNS轮询解析后,12W的并发请求被均摊到每台Nginx,每个节点分别承载4W的并发请求,通过这种方式就能够完美的解决之前的:单节点Nginx无法承载超高并发量而宕机的问题,如下:
![Nginx水平集群]

同时DNS域名解析,也依旧可以配置调度算法,如Rate权重分配、最少连接数分配、甚至可以按照客户端网络的运营商、客户端所在地区等方式进行解析分配,但仅一小部分的DNS服务器支持。

浅谈DNS域名轮询解析的优劣

这种方式带来的优势极为明显:

无需增加额外的成本即可实现多节点水平集群,利于系统拓展。

但也存在非常大的劣势:

  • ①与其他的负载均衡方案不同,其他的负载方案一般都会自带健康监测机制,但DNS则无法感知,也就是当下游的某服务器宕机,DNS服务器会依旧向其分发请求。
  • ②无法根据服务器的硬件配置,合理的分配客户端请求,大部分DNS服务器只支持最简单的轮询调度。

虽然DNS轮询解析方案存在很大的劣势,但这两个劣势对比其带来的收益可以忽略不计,因为现在云计算技术的发展,多台节点保持相同的配置已不再是难事。同时,由于Nginx本身就会利用KeepalivedVIP机制实现高可用,所以就算某个节点宕机,从机也可顶替上线接管流量,中间只会有很短暂的切换时间。

而且如果DNS将客户端请求分发到某个宕机节点时,客户端看到的结果便是空白页、超时无响应或请求错误的信息,通常情况下,依据用户的习性,都会再次重试,那么客户端再次发出的请求会被轮询解析到其他节点,而从机在这个时间间隔内也能够成功上线接管服务。

这篇关于深入浅出 -- 系统架构之日均亿级吞吐量的网关架构(DNS轮询解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896325

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域