本文主要是介绍【瑕疵检测】基于matlab GUI Gabor滤波布匹瑕疵检测【含Matlab源码 407期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、Gabor滤波布匹瑕疵检测简介
1 Gabor滤波器
2 Gabor函数结合代码分析:
⛄二、部分源代码
function varargout = bupi(varargin)
% BUPI MATLAB code for bupi.fig
% BUPI, by itself, creates a new BUPI or raises the existing
% singleton*.
%
% H = BUPI returns the handle to a new BUPI or the handle to
% the existing singleton*.
%
% BUPI(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in BUPI.M with the given input arguments.
%
% BUPI(‘Property’,‘Value’,…) creates a new BUPI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before bupi_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to bupi_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help bupi
% Last Modified by GUIDE v2.5 28-May-2015 22:11:59
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @bupi_OpeningFcn, …
‘gui_OutputFcn’, @bupi_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before bupi is made visible.
function bupi_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to bupi (see VARARGIN)
axes(handles.axes1);
imshow([255]);
axes(handles.axes2);
imshow([255]);
axes(handles.axes3);
imshow([255]);
axes(handles.axes4);
imshow([255]);
axes(handles.axes5);
imshow([255]);
axes(handles.axes6);
imshow([255]);
% Choose default command line output for bupi
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes bupi wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% — Outputs from this function are returned to the command line.
function varargout = bupi_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
global tu
axes(handles.axes1)
[filename,pathname]=uigetfile({ …
‘.’,‘All Files(.)’;},…
‘选择文件’);
%
if isequal([filename,pathname],[0,0])
return
else
%读取图片
pic = fullfile(pathname,filename);
b = imread(pic);
imshow(b);%上面是打开图片的步骤,这一句是显示图片
tu=b;
title('原始图像');
%handle.axes1=b;
end
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
global tu;
tu2 = gabor2(tu,0);
axes(handles.axes2);
imshow(tu2);
title(‘0度滤波结果’);
tu2 = gabor2(tu,pi/4);
axes(handles.axes3);
imshow(tu2);
title(‘pi/4度滤波结果’);
tu2 = gabor2(tu,pi/2);
axes(handles.axes4);
imshow(tu2);
title(‘pi/2度滤波结果’);
tu2 = gabor2(tu,pi/43);
axes(handles.axes5);
imshow(tu2);
title('pi/43度滤波结果’);
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% — Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
global tu;
P = 5;
T1 =8;
T2 = 100;
I = tu;
I0=I;
%预处理
I=double(I0); %数据类型的转换
[M,N]=size(I);%得到待检测图像的大小
J=junzhicaiyang(I,M,N,P); %调用均值下采样函数
J=uint8(J);
%双线性插值,恢复原来的图像大小
I1=imresize(J,P,‘bilinear’); %双线性插值,恢复原来图像的大小。
%进行方差下采样,用于增强图像疵点信息
I1=double(I1);
J1=fangchacaiyang(I1,M,N,P); %调用方差下采样函数
J1=uint8(J1);
%双线性插值,恢复原来图像的大小。
I=imresize(J1,P,‘bilinear’);
%进行二值化及其后处理
T=Otsu(I);
%解决了利用大津法不能分辨是否含有疵点的缺陷的缺点,统计发现无疵点图像otsu得到阈值均小于8
if T<=T1
T=T1+1;
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]薛婷婷,刘秀平,张凯兵,王珍,闫亚娣,闫焕营.基于学习的Gabor滤波器多样式布匹瑕疵检测[J].西安工程大学学报. 2017,31(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
这篇关于【瑕疵检测】基于matlab GUI Gabor滤波布匹瑕疵检测【含Matlab源码 407期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!