【语音去噪】基于matlab GUI语音加噪和降噪处理【含Matlab源码 473期】

2024-04-11 08:18

本文主要是介绍【语音去噪】基于matlab GUI语音加噪和降噪处理【含Matlab源码 473期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、案例简介

主要介绍的是的语音信号的简单处理。本论文针对以上问题,运用数字信号学基本原理实现语音信号的处理,在matlab7.0环境下综合运用信号提取,幅频变换以及傅里叶变换、滤波等技术来进行语音信号处理。我所做的工作就是在matlab7.0软件上编写一个处理语音信号的程序,能对语音信号进行采集,并对其进行各种处理,达到简单语音信号处理的目的。
对语音信号的研究,本论文采用了设计两种滤波器的基本研究方法来达到研究语音信号去噪的目的,最终结合图像以及对语音信号的回放,通过对比,得出结论。
本课题的研究基本步骤如下:
1、语音信号的录制。
2、在MATLAB平台上读入语音信号。
3、绘制频谱图并回放原始语音信号。
4、利用MATLAB编程加入一段正弦波噪音,设计滤波器去噪。
5、利用MATLAB编程加入一段随机噪音信号,设计FIR和IIR滤波器去噪,并分别绘制频谱图、回放语音信号。
6 通过仿真后的图像以及对语音信号的回放,对比两种去噪方式的优缺点。

⛄二、部分源代码

function varargout = zaosheng(varargin)
% ZAOSHENG MATLAB code for zaosheng.fig
% ZAOSHENG, by itself, creates a new ZAOSHENG or raises the existing
% singleton*.
%
% H = ZAOSHENG returns the handle to a new ZAOSHENG or the handle to
% the existing singleton*.
%
% ZAOSHENG(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in ZAOSHENG.M with the given input arguments.
%
% ZAOSHENG(‘Property’,‘Value’,…) creates a new ZAOSHENG or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before zaosheng_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to zaosheng_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help zaosheng

% Last Modified by GUIDE v2.5 09-Jun-2015 02:09:47

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @zaosheng_OpeningFcn, …
‘gui_OutputFcn’, @zaosheng_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before zaosheng is made visible.
function zaosheng_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to zaosheng (see VARARGIN)

% Choose default command line output for zaosheng
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes zaosheng wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = zaosheng_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
%%选择语音信号,画出波形图与频谱
global y;
global fs;
global bits;
global N;
global t;
global x;
global x1;
global y1;
global y2;
global y3;
global a;
global b;
global d;

H={‘*.wav’};
[filename,pathname]=uigetfile(H,‘请选择打开文件’);
file=strcat(pathname,filename);
[y,fs,bits]=wavread(file);
y=y(:,1);
sound(y,fs);
N=length(y);
t=(0:N-1)/fs;

cla(handles.axes1);
cla(handles.axes2);
cla(handles.axes3);
cla(handles.axes4);
set(handles.axes1,‘visible’,‘on’);
set(handles.axes2,‘visible’,‘on’);
set(handles.axes3,‘visible’,‘off’);
set(handles.axes4,‘visible’,‘off’);

axes(handles.axes1);
plot(t,y);
title(‘原始语音信号波形’);
xlabel(‘时间(s)’);
ylabel(‘幅值(dB)’);

y1=fft(y,1024);
f=fs*(0:511)/1024;

axes(handles.axes2);
plot(f,abs(y1(1:512)));
title(‘原始语音信号频谱’);
xlabel(‘频率(Hz)’);
ylabel(‘幅值(dB)’);
set(gca,‘xlim’,[1 5000]);

% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
%%噪声信号波形与频谱
global y;
global fs;
global bits;
global N;
global t;
global x;
global x1;
global y1;
global y2;
global y3;
global a;
global b;
global d;

randn(‘state’,0);
x1=0.1*randn(N,1);%产生高斯白噪声序列即噪声信号
sound(x1,fs);%播放噪声信号

cla(handles.axes3);
cla(handles.axes4);
set(handles.axes1,‘visible’,‘on’);
set(handles.axes2,‘visible’,‘on’);
set(handles.axes3,‘visible’,‘on’);
set(handles.axes4,‘visible’,‘on’);

axes(handles.axes3);
plot(t,x1);
title(‘高斯随机噪声波形’);
xlabel(‘时间(s)’);
ylabel(‘幅值(dB)’);

axes(handles.axes4);
y2=fft(x1,1024);
f=fs*(0:511)/1024;
plot(f,abs(y2(1:512)));
title(‘高斯随机噪声频谱’);
xlabel(‘频率(Hz)’);
ylabel(‘幅值(dB)’);
set(gca,‘xlim’,[1 5000]);
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% — Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
%%加噪后语音信号波形与频谱
global y;
global fs;
global bits;
global N;
global t;
global x;
global x1;
global y1;
global y2;
global y3;
global a;
global b;
global d;

x=x1+y;
sound(x,fs);

cla(handles.axes3);
cla(handles.axes4);
set(handles.axes1,‘visible’,‘on’);
set(handles.axes2,‘visible’,‘on’);
set(handles.axes3,‘visible’,‘on’);
set(handles.axes4,‘visible’,‘on’);

axes(handles.axes3);
plot(t,x);
title(‘加噪后语音信号波形’);
xlabel(‘时间(s)’);
ylabel(‘幅值(dB)’);

axes(handles.axes4);
y3=fft(x,1024);
f=fs*(0:511)/1024;
plot(f,abs(y3(1:512)));
title(‘加噪后语音信号频谱’);
xlabel(‘频率(Hz)’);
ylabel(‘幅值(dB)’);
set(gca,‘xlim’,[1 5000]);
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【语音去噪】基于matlab GUI语音加噪和降噪处理【含Matlab源码 473期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893540

相关文章

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

使用Python处理CSV和Excel文件的操作方法

《使用Python处理CSV和Excel文件的操作方法》在数据分析、自动化和日常开发中,CSV和Excel文件是非常常见的数据存储格式,ython提供了强大的工具来读取、编辑和保存这两种文件,满足从基... 目录1. CSV 文件概述和处理方法1.1 CSV 文件格式的基本介绍1.2 使用 python 内

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na