【语音识别】基于matlab功率谱和倍频法男女生识别【含Matlab源码 705期】

2024-04-11 07:48

本文主要是介绍【语音识别】基于matlab功率谱和倍频法男女生识别【含Matlab源码 705期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、简介

1 语音信号倍频程谱、1/3倍频程谱
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2 原始信号频谱、功率谱及功率谱密度分析
2.1 频谱分析
由图1和图2的(男/女声)原始信号频谱对比分析可知,女声的频谱幅值在每个频段基本都大于男声,且在1000Hz处女声的频谱幅值大于800,而男声的小于800;在6000以上频段女声的频谱幅值较男声的明显更大。

2.2 功率谱及功率谱密度分析
这段录音是非周期性的,可将其看作随机信号处理,一个信号有三个组成部分:幅值、相位和频率成分。对于随机信号而言,这三个组成部分都是随机的,当然它的幅值是围绕平均值在交变,包含所有的频率成分,相位完全杂乱无序。任一时刻与下一时刻之间没有任何关联,所以,不能用确定的数学函数来表征,只能从统计学角度来分析处理。将一个信号从时域通过FFT变换到频域,得到的直接结果就是所谓的频谱,频谱是复数形式,有幅值和相位。由于频谱是复数形式,包含相位信息,当信号中包含不相关的噪声成分时,由于噪声成分的相位是杂乱无序的,那么多次线性平均之后,可以将不相关的噪声平均掉。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄二、部分源代码

clc;
clear;
close all;
%%原始声音信号
[x,fs]=audioread('男声.m4a');%读取声音信号
N=length(x);
t=(0:1/fs:(N-1)/fs);%定义采样时间
figure(1);
subplot(2,2,1);
plot(t,x);
axis([0 60 -0.3 0.3]);
title('(男声)声音信号时域');
xlabel('时间');
ylabel('幅值');
y=fft(x,N);
y1=abs(y);       %计算双边谱
y2=y1(1:N/2+1);    %计算单边谱
f=fs*(0:(N/2))/N;  %计算频率
P=y2.^2;  %功率计算
subplot(2,2,2);
plot(f,y2);
axis([0 7600 0 900]);
title('原始信号频谱');
xlabel('频率');
ylabel('幅值');
subplot(2,2,3);
plot(f,P);
title('原始信号功率谱');
xlabel('频率');
ylabel('功率值'); 
%倍频程计算
n=1/3;                                     %倍频程数
k=0;                                       %循环次数初始化     
w2=22.4;                                   %初始化w2,人耳能听到的声音范围20Hz-20KHz 
while(w2<=fs/2)                            %循环到w2>Fs/2         w1=w2;         w2=w1*2^n;         k=k+1;     
end
w2=22.4; 
m=1:1:k-1;
centerf(m)=zeros(length(m),1);
r(m)=zeros(length(m),1);
for m=1:1:k-1                             %m从1每次加1,直到m=k-1         w1=w2;                                %确定频带下限频率w1         w2=w1*2^n;                            %确定频带上限频率w2          centerf(m)=(w1+w2)/2;                 %计算中心频率centerf n1=round(w1/(fs/N));n2=round(w2/(fs/N));y3=y1(n1-1:n2-1);n3=length(y3);r(m)=sum(((y3).^2)/n3);%每个频程的平均功率
end
pref=2e-5;%参考声压
subplot(2,2,4);
stem(centerf,20*log10(r/pref));
xlabel('中心频率');
ylabel('能量');
title('1/3倍频程谱');figure(2);
%倍频程计算
n=1;                                       %倍频程数
k=0;                                       %循环次数初始化     
w2=22.4;                                   %初始化w2,人耳能听到的声音范围20Hz-20KHz 
while(w2<=fs/2)                            %循环到w2>Fs/2         w1=w2;         w2=w1*2^n;         k=k+1;     
end
w2=22.4; 
m=1:1:k-1;
centerf(m)=zeros(length(m),1);
r(m)=zeros(length(m),1);
for m=1:1:k-1                             %m从1每次加1,直到m=k-1         w1=w2;                                %确定频带下限频率w1         w2=w1*2^n;                            %确定频带上限频率w2          centerf(m)=(w1+w2)/2;                 %计算中心频率centerf n1=round(w1/(fs/N));n2=round(w2/(fs/N));y3=y1(n1-1:n2-1);n3=length(y3);r(m)=sum(((y3).^2)/n3);%每个频程的平均功率
end
pref=2e-5;%参考声压
subplot(211);
stem(centerf,20*log10(r/pref));
xlabel('中心频率');
ylabel('能量');
title('倍频程谱');n=1/3;                                       %倍频程数
k=0;                                       %循环次数初始化     
w2=22.4;                                   %初始化w2,人耳能听到的声音范围20Hz-20KHz 
while(w2<=fs/2)                            %循环到w2>Fs/2         w1=w2;         w2=w1*2^n;         k=k+1;     
end
%%原始声音信号
[x,fs]=audioread('C:\Users\lenovo\Desktop\326a7c94289093dcf4885157a5936c6b\男女声音识别大作业\男声.m4a');%读取声音信号
N=length(x);
t=(0:1/fs:(N-1)/fs);%定义采样时间
figure(1);
subplot(221);
plot(t,x);
axis([0 60 -0.3 0.3]);
title('(男声)声音信号时域');
xlabel('时间');
ylabel('幅值');
y=fft(x,N);
y1=abs(y);       %计算双边谱
y2=y1(1:N/2+1);    %计算单边谱
f=fs*(0:(N/2))/N;  %计算频率
P=y2.^2;  %功率计算
subplot(223);
plot(f,P);
title('(男声)原始信号功率谱');
xlabel('频率');
ylabel('功率值'); figure(2);
subplot(321);
plot(f,y2);
axis([0 7600 0 900]);
title('(男声)原始信号频谱');
xlabel('频率');
ylabel('幅值');
%倍频程计算
n=1;                                       %倍频程数
k=0;                                       %循环次数初始化     
w2=22.4;                                   %初始化w2,人耳能听到的声音范围20Hz-20KHz 
while(w2<=fs/2)                            %循环到w2>Fs/2         w1=w2;         w2=w1*2^n;         k=k+1;     
end
w2=22.4; 
m=1:1:k-1;
centerf(m)=zeros(length(m),1);
r(m)=zeros(length(m),1);
for m=1:1:k-1                             %m从1每次加1,直到m=k-1         w1=w2;                                %确定频带下限频率w1         w2=w1*2^n;                            %确定频带上限频率w2          centerf(m)=sqrt(w1*w2);                 %计算中心频率centerf n1=round(w1/(fs/N));n2=round(w2/(fs/N));y3=y1(n1-1:n2-1);n3=length(y3);r(m)=sum(((y3).^2)/n3);%每个频带内频谱谱线幅值的均方根之和
end
pref=2e-5;%参考声压
subplot(323);
bar(20*log10(r/pref));%计算分贝值
set(gca,'XTick',(1:1:10)); grid   
set(gca,'XTickLabels',round(centerf(1:1:length(centerf))));
xlabel('中心频率/Hz');
ylabel('声压/dB');
title('(男声)倍频程谱');n=1/3;                                       %倍频程数
k=0;                                       %循环次数初始化     
w2=22.4;                                   %初始化w2,人耳能听到的声音范围20Hz-20KHz 
while(w2<=fs/2)                            %循环到w2>Fs/2         w1=w2;         w2=w1*2^n;         k=k+1;     
end
w2=22.4; 
m=1:1:k-1;
centerf(m)=zeros(length(m),1);
r(m)=zeros(length(m),1);
for m=1:1:k-1                             %m从1每次加1,直到m=k-1         w1=w2;                                %确定频带下限频率w1         w2=w1*2^n;                            %确定频带上限频率w2          centerf(m)=sqrt(w1*w2);                 %计算中心频率centerf n1=round(w1/(fs/N));n2=round(w2/(fs/N));y3=y1(n1-1:n2-1);n3=length(y3);r(m)=sum(((y3).^2)/n3);%每个频带内频谱谱线幅值的均方根之和
end
pref=2e-5;%参考声压
subplot(325);
bar(20*log10(r/pref));%计算分贝值
set(gca,'XTick',(1:1:30)); grid   
set(gca,'XTickLabels',round(centerf(1:1:length(centerf))));
xlabel('中心频率/Hz');
ylabel('声压/dB');
title('(男声)三分之一倍频程谱');%%女声倍频程分析
clc;
clear;
%原始声音信号
[x,fs]=audioread('C:\Users\lenovo\Desktop\326a7c94289093dcf4885157a5936c6b\男女声音识别大作业\女声.m4a');%读取声音信号
N=length(x);
t=(0:1/fs:(N-1)/fs);%定义采样时间
figure(1);
subplot(222);
plot(t,x);
axis([0 60 -0.3 0.3]);
title('(女声)声音信号时域');
xlabel('时间');
ylabel('幅值');
y=fft(x,N);
y1=abs(y);       %计算双边谱
y2=y1(1:N/2+1);    %计算单边谱
f=fs*(0:(N/2))/N;  %计算频率
P=y2.^2;  %功率计算
subplot(224);
plot(f,P);
title('(女声)原始信号功率谱');
xlabel('频率');
ylabel('功率值'); figure(2);
subplot(322);
plot(f,y2);
axis([0 7600 0 900]);
title('(女声)原始信号频谱');
xlabel('频率');
ylabel('幅值');
%倍频程计算
n=1;                                       %倍频程数
k=0;                                       %循环次数初始化     
w2=22.4;                                   %初始化w2,人耳能听到的声音范围20Hz-20KHz 
while(w2<=fs/2)                            %循环到w2>Fs/2         w1=w2;         w2=w1*2^n;         k=k+1;     
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【语音识别】基于matlab功率谱和倍频法男女生识别【含Matlab源码 705期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893491

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除