【图像增强】基于matlab GUI暗通道+Retinex图像去雾(带面板)【含Matlab源码 732期】

2024-04-11 07:38

本文主要是介绍【图像增强】基于matlab GUI暗通道+Retinex图像去雾(带面板)【含Matlab源码 732期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、简介

1 暗通道先验图像去雾方法
1.1 光线透射率模型
光在传播中由于散射使得从光源发出的辐射只有部分能到达接收传感器,其他则被散射到传播介质中。假设距离较小时散射光强与距离是线性关系,当光源距离传感器无限接近时,光的衰减值可近似为:Br,其中β为空气的散射系数;r为光源与传感器间的距离。大气密度均匀时,光线透射率的数学模型为:
在这里插入图片描述
式中:D为场景深度;t为光线透射率,用于量化传感器接收光强与光源表面光强间的比例关系,即没有被散射的辐射与光源辐射间的比例关系。

1.2 暗通道先验理论
基于统计大量清晰图像得到的暗通道先验理论是指大部分不含天空的优质图像的所有像素在R,G,B这3个通道中最少存在一个颜色通道灰度值相当低以至趋近于0[5],也就是在一定的微小区域里最小辐射强度值极低。一幅图像J可定义为:
在这里插入图片描述
式中:J dark为图像J的暗通道值; J为图像J的c通道灰度值; Q(x) 为以像素x为中心的局部微小区域; y为区域内任一像素。

1.3 暗通道先验图像去雾处理
图像去雾的目标是将传感器接收到的有雾图像利用获得的有用信息通过去雾还原出清晰图像。暗通道先验图像去雾处理是根据暗通道原理获取先验知识,再利用有雾图像退化模型实现图像去雾效果。

1.3.1 图像退化模型
在计算机视觉图形学领域,有雾图像的退化模型为[6]:
在这里插入图片描述
式中:l(x)为传感器接收到的场景信号,即输入的有雾影像;场景辐射J(x)为信号处理后的清晰图像;A为环境光照强度;t(x)为大气透射率。J(x)t(x)称为直接衰减项,用来量化场景辐射和传播中的信号损失。A(1-t(x))表示图像接收到的大气散射光强,它是引起色彩偏移和云雾效果的直接原因。

1.3.2 估算环境光照强度
暗通道图像中灰度值越高的区域云雾越厚,在输入图像中位于这部分区域的]像素灰度值越接近于环境光照强度。估算环境光照强度首先需要找到暗通道图像中灰度值最高并占图像总像素数量01%的像素点,记录它们对应的坐标索引,然后根据坐标索引在输入的有雾图像中找到对应像素点,计算有雾图像中对应像素点的灰度平均值作为环境光照强度A。

1.3.3估算大气透射率
使用t’(x)表示以像素x为中心的滤波窗口内的大气透射率,假设它局部不变对式(3)最小值运算,分别计算R,G,B这3个颜色通道中的最小值,即
在这里插入图片描述
将3个颜色通道的最小值进行运算,可得出以像素x为中心的滤波窗口内的灰度最小值,即
在这里插入图片描述
根据暗通道先验原理和式(2)可以得出:
在这里插入图片描述
于是,由式(5)和式(6)计算出大气透射率为:
在这里插入图片描述
1.3.4 去雾处理
暗通道先验条件可用来量化云雾厚度和全部像素的辐射还原量,然后恢复出清晰优质的图像。通过式(3)的有雾图像退化模型和环境光照强度A、大气透射率t(x),可进行单幅图像去雾处理,即
在这里插入图片描述
2 暗通道先验算法去雾效果优化
本文优化流程如图1所示。当输入图像云雾不均时,其大气透射率图层的灰度信息仅处于有限范围内,而整张图像的辐射还原量将被限制在一定区间里,不能分别准确还原云雾厚薄区域的辐射强度,从而影响图像去雾效果,考虑利用拉伸大气透射率图层对比度的方法来改善云雾厚薄不均时基于暗通道先验得出的无雾图像质量。
在这里插入图片描述
图1 基于暗通道先验的图像去雾处理效果优化流程

⛄二、部分源代码

function varargout = selectFile(varargin)
% SELECTFILE MATLAB code for selectFile.fig
% SELECTFILE, by itself, creates a new SELECTFILE or raises the existing
% singleton*.
%
% H = SELECTFILE returns the handle to a new SELECTFILE or the handle to
% the existing singleton*.
%
% SELECTFILE(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in SELECTFILE.M with the given input arguments.
%
% SELECTFILE(‘Property’,‘Value’,…) creates a new SELECTFILE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before selectFile_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to selectFile_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help selectFile

% Last Modified by GUIDE v2.5 07-Mar-2019 09:47:39

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @selectFile_OpeningFcn, …
‘gui_OutputFcn’, @selectFile_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before selectFile is made visible.
function selectFile_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to selectFile (see VARARGIN)

% Choose default command line output for selectFile
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes selectFile wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = selectFile_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.选择文件按钮
function pushbutton1_Callback(hObject, eventdata, handles)
axes(handles.axes5);%绑定控制的是那个axes
[filename,pathname]=uigetfile({‘.jpg’;'.png’},‘选择测试图片文件’);
picturepath=[pathname,filename];
before=imread(picturepath);
imshow(before);
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% — If Enable == ‘on’, executes on mouse press in 5 pixel border.
% — Otherwise, executes on mouse press in 5 pixel border or over pushbutton2.
function pushbutton4_Callback(hObject, eventdata, handles)
p=getimage(handles.axes5);%获取到axes5上显示的图片
J=darktest§;%进行暗通道先验
axes(handles.axes6);%绑定结果输出在axes6
imshow(J);
function out = Retinex(filename)
I = filename;
R = I(:, :, 1);
[N1, M1] = size®;
R0 = double®;
Rlog = log(R0+1);
Rfft2 = fft2(R0);

sigma = 250;
F = fspecial(‘gaussian’, [N1,M1], sigma);
Efft = fft2(double(F));

DR0 = Rfft2.* Efft;
DR = ifft2(DR0);

DRlog = log(DR +1);
Rr = Rlog - DRlog;
EXPRr = exp(Rr);
MIN = min(min(EXPRr));
MAX = max(max(EXPRr));
EXPRr = (EXPRr - MIN)/(MAX - MIN);
EXPRr = adapthisteq(EXPRr);

G = I(:, :, 2);

G0 = double(G);
Glog = log(G0+1);
Gfft2 = fft2(G0);

DG0 = Gfft2.* Efft;
DG = ifft2(DG0);

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]丁洁,陆安江,彭熙舜.结合暗通道和Retinex理论的图像去雾算法[J].激光杂志. 2021,42(12)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【图像增强】基于matlab GUI暗通道+Retinex图像去雾(带面板)【含Matlab源码 732期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893465

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Java 创建图形用户界面(GUI)入门指南(Swing库 JFrame 类)概述

概述 基本概念 Java Swing 的架构 Java Swing 是一个为 Java 设计的 GUI 工具包,是 JAVA 基础类的一部分,基于 Java AWT 构建,提供了一系列轻量级、可定制的图形用户界面(GUI)组件。 与 AWT 相比,Swing 提供了许多比 AWT 更好的屏幕显示元素,更加灵活和可定制,具有更好的跨平台性能。 组件和容器 Java Swing 提供了许多

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除