【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】

2024-04-11 06:18

本文主要是介绍【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⛄一、遗传算法简介

1 引言
在这里插入图片描述
在这里插入图片描述
2 遗传算法理论
2.1 遗传算法的生物学基础
在这里插入图片描述
在这里插入图片描述
2.2 遗传算法的理论基础
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 遗传算法的基本概念
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.4 标准的遗传算法
在这里插入图片描述
在这里插入图片描述
2.5 遗传算法的特点
在这里插入图片描述
在这里插入图片描述
2.6 遗传算法的改进方向
在这里插入图片描述
3 遗传算法流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4 关键参数说明
在这里插入图片描述

⛄二、BP神经网络简介

1 BP神经网络预测原理简介
BP 神经网络是一种多层前馈神经网络,常用的为输入层-单隐含层-输出层的三层结构,如下图所示。
在这里插入图片描述
BP神经网络训练的主要思想:输入的信号特征数据先映射到隐含层(激活函数实现),再映射到输出层(默认采用线性传递函数),得到期望输出值。将期望输出值和实际测量值做比较,计算误差函数J,再将误差反向传播,通过梯度下降等算法来调节BP网络的权值和阈值。重复该过程,直到满足设定的目标误差或者最大迭代次数等终止准则,停止训练。

⛄三、部分源代码

clear all
clc
close all
tic
%% 全局变量

global pn
global tn
global R
global S2
global S1
global S
S1 = 12;
%% 数据处理
load data.mat
X=xlsread(‘数据.xls’);
data = [data X(:,end)];
% 85%用于训练,15%进行预测
nn = floor(0.85*size(data,1));
input=data(1:nn,1:3)‘;
output=data(1:nn,end)’;
input_test=data(nn+1:end,1:3)‘;
output_test=data(nn+1:end,end)’;

M =size(input,2); %输入节点个数
N =size(output,2);%输出节点个数
%% 训练数据
p = input;
t = output;
[pn,minp,maxp,tn,mint,maxt] =premnmx(p,t);%归一化
%% 建立神经网络
net = newff(minmax(pn),[S1,1],{‘tansig’,‘purelin’});
net.trainParam.show = 50;
net.trainParam.lr = 0.1;
net.trainParam.epochs = 1000;
net.trainParam.goal =1e-10;
[net,tr] = train(net,pn,tn);
%% 遗传操作
R = size(p,1);
S2= size(t,1);
S = RS1+S1S2+S1+S2;
aa = ones(S,1)*[-1 1];
popu = 50;
initPpp = initializega(popu,aa,‘gabpEval’);
gen = 500;
[x,endPop,bPop,trace] = ga(aa,‘gabpEval’,[],initPpp,[1e-6 1 1],‘maxGenTerm’,gen,…
‘normGeomSelect’,[0.09],[‘arithXover’],[2],‘nonUnifMutation’,[2 gen 3]);
%% 画图迭代图
figure(1)
plot(trace(:,1),1./trace(:,3),‘r-’);
hold on
grid on
plot(trace(:,1),1./trace(:,2),‘b-’);
xlabel(‘迭代数’)
ylabel(‘均方误差’)
title(‘均方误差曲线图’)
figure(2)
plot(trace(:,1),trace(:,3),‘r-’);
hold on
grid on
plot(trace(:,1),trace(:,2),‘b-’);
xlabel(‘迭代数’)
ylabel(‘适应度函数值’)
title(‘适应度函数迭代曲线图’)
[W1,B1,W2,B2,val] = gadecod(x);
W1;
W2;
B1;
B2;
net.IW{1,1} = W1;
net.LW{2,1} = W2;

net = train(net,pn,tn);
k = input_test;
kn = tramnmx(k,minp,maxp);
s_bp = sim(net,kn);
s_bp22 = postmnmx(s_bp,mint,maxt);
toc
load gabp.mat
xk=2;
figure
plot(1:length(output_test),output_test,‘r-*’,1:length(output_test),s_bp22,‘b-o’,‘linewidth’,xk)
grid on%加网格
legend(‘真实值’,‘预测值’)%图例
title(‘神经网预测真实值与预测值对比’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘成交额’)%纵坐标标题
xk = 2;
error2 = abs(s_bp22 - output_test)./output_test.*100;
figure%画图
plot(1:length(error2),error2,‘ko-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
title(‘测试样本相对误差图%’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘相对误差%’)%纵坐标标题
zh_gabp = [output_test ;s_bp22; error2]
save zh_gabp zh_gabp
function [W1,B1,W2,B2,val] = gadecod(x)
global pn;
global tn;
global R;
global S2;
global S1;
global S

for i = 1 : S1
for k = 1 : R
W1(i,k) = x(R*(i-1)+k);
end
end

for i = 1 : S2
for k = 1 : S1
W2(i,k) = x(S1*(i-1)+k+R*S1);
end
end

for i = 1: S1
B1(i,1) = x((RS1+S1S2)+i);
end

for i = 1: S2
B2(i,1) = x((RS1+S1S2+S1)+i);
end

A1 = tansig(W1pn,B1);
A2 = purelin(W2
A1,B2);
SE = sumsqr(tn-A2);
val = 1/SE;
%% 训练模型
[net,tr] = train(net,pn,tn);%训练网络
nihe = sim(net,pn);%训练输出
nihe2 = postmnmx(nihe,mint,maxt);%训练输出反归一化
%% 预测
s_bp = sim(net,kn);%预测
s_bp2 = postmnmx(s_bp,mint,maxt);%预测输出反归一化
s_bp2 = s_bp2’;%转置
figure%画图
xk = 2;
plot(1:length(outtest),outtest,‘r–’,1:length(outtest),s_bp2,‘b.-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
legend(‘真实值’,‘预测值’)%图例
title(‘神经网预测真实值与预测值对比’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘成交额’)%纵坐标标题
%% 误差分析
j_error = abs(outtest - s_bp2’); %绝对误差
x_error = abs(outtest - s_bp2’)./outtest.*100;%相对误差
figure%画图
plot(1:length(x_error),x_error,‘ko-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
title(‘测试样本相对误差图%’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘相对误差%’)%纵坐标标题
%% 显示
disp(‘测试真实值’)
outtest
disp(‘测试预测值’)
s_bp2
disp(‘相对误差%’)
x_error
zh_bp = [outtest; s_bp2’; x_error];
save zh_bp zh_bp

⛄四、运行结果

在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]郭利进,乔志忠.基于遗传算法优化BP神经网络的粮食温度预测研究[J].粮食与油脂. 2023,36(01)

这篇关于【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893286

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory