【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】

2024-04-11 06:18

本文主要是介绍【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⛄一、遗传算法简介

1 引言
在这里插入图片描述
在这里插入图片描述
2 遗传算法理论
2.1 遗传算法的生物学基础
在这里插入图片描述
在这里插入图片描述
2.2 遗传算法的理论基础
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 遗传算法的基本概念
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.4 标准的遗传算法
在这里插入图片描述
在这里插入图片描述
2.5 遗传算法的特点
在这里插入图片描述
在这里插入图片描述
2.6 遗传算法的改进方向
在这里插入图片描述
3 遗传算法流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4 关键参数说明
在这里插入图片描述

⛄二、BP神经网络简介

1 BP神经网络预测原理简介
BP 神经网络是一种多层前馈神经网络,常用的为输入层-单隐含层-输出层的三层结构,如下图所示。
在这里插入图片描述
BP神经网络训练的主要思想:输入的信号特征数据先映射到隐含层(激活函数实现),再映射到输出层(默认采用线性传递函数),得到期望输出值。将期望输出值和实际测量值做比较,计算误差函数J,再将误差反向传播,通过梯度下降等算法来调节BP网络的权值和阈值。重复该过程,直到满足设定的目标误差或者最大迭代次数等终止准则,停止训练。

⛄三、部分源代码

clear all
clc
close all
tic
%% 全局变量

global pn
global tn
global R
global S2
global S1
global S
S1 = 12;
%% 数据处理
load data.mat
X=xlsread(‘数据.xls’);
data = [data X(:,end)];
% 85%用于训练,15%进行预测
nn = floor(0.85*size(data,1));
input=data(1:nn,1:3)‘;
output=data(1:nn,end)’;
input_test=data(nn+1:end,1:3)‘;
output_test=data(nn+1:end,end)’;

M =size(input,2); %输入节点个数
N =size(output,2);%输出节点个数
%% 训练数据
p = input;
t = output;
[pn,minp,maxp,tn,mint,maxt] =premnmx(p,t);%归一化
%% 建立神经网络
net = newff(minmax(pn),[S1,1],{‘tansig’,‘purelin’});
net.trainParam.show = 50;
net.trainParam.lr = 0.1;
net.trainParam.epochs = 1000;
net.trainParam.goal =1e-10;
[net,tr] = train(net,pn,tn);
%% 遗传操作
R = size(p,1);
S2= size(t,1);
S = RS1+S1S2+S1+S2;
aa = ones(S,1)*[-1 1];
popu = 50;
initPpp = initializega(popu,aa,‘gabpEval’);
gen = 500;
[x,endPop,bPop,trace] = ga(aa,‘gabpEval’,[],initPpp,[1e-6 1 1],‘maxGenTerm’,gen,…
‘normGeomSelect’,[0.09],[‘arithXover’],[2],‘nonUnifMutation’,[2 gen 3]);
%% 画图迭代图
figure(1)
plot(trace(:,1),1./trace(:,3),‘r-’);
hold on
grid on
plot(trace(:,1),1./trace(:,2),‘b-’);
xlabel(‘迭代数’)
ylabel(‘均方误差’)
title(‘均方误差曲线图’)
figure(2)
plot(trace(:,1),trace(:,3),‘r-’);
hold on
grid on
plot(trace(:,1),trace(:,2),‘b-’);
xlabel(‘迭代数’)
ylabel(‘适应度函数值’)
title(‘适应度函数迭代曲线图’)
[W1,B1,W2,B2,val] = gadecod(x);
W1;
W2;
B1;
B2;
net.IW{1,1} = W1;
net.LW{2,1} = W2;

net = train(net,pn,tn);
k = input_test;
kn = tramnmx(k,minp,maxp);
s_bp = sim(net,kn);
s_bp22 = postmnmx(s_bp,mint,maxt);
toc
load gabp.mat
xk=2;
figure
plot(1:length(output_test),output_test,‘r-*’,1:length(output_test),s_bp22,‘b-o’,‘linewidth’,xk)
grid on%加网格
legend(‘真实值’,‘预测值’)%图例
title(‘神经网预测真实值与预测值对比’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘成交额’)%纵坐标标题
xk = 2;
error2 = abs(s_bp22 - output_test)./output_test.*100;
figure%画图
plot(1:length(error2),error2,‘ko-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
title(‘测试样本相对误差图%’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘相对误差%’)%纵坐标标题
zh_gabp = [output_test ;s_bp22; error2]
save zh_gabp zh_gabp
function [W1,B1,W2,B2,val] = gadecod(x)
global pn;
global tn;
global R;
global S2;
global S1;
global S

for i = 1 : S1
for k = 1 : R
W1(i,k) = x(R*(i-1)+k);
end
end

for i = 1 : S2
for k = 1 : S1
W2(i,k) = x(S1*(i-1)+k+R*S1);
end
end

for i = 1: S1
B1(i,1) = x((RS1+S1S2)+i);
end

for i = 1: S2
B2(i,1) = x((RS1+S1S2+S1)+i);
end

A1 = tansig(W1pn,B1);
A2 = purelin(W2
A1,B2);
SE = sumsqr(tn-A2);
val = 1/SE;
%% 训练模型
[net,tr] = train(net,pn,tn);%训练网络
nihe = sim(net,pn);%训练输出
nihe2 = postmnmx(nihe,mint,maxt);%训练输出反归一化
%% 预测
s_bp = sim(net,kn);%预测
s_bp2 = postmnmx(s_bp,mint,maxt);%预测输出反归一化
s_bp2 = s_bp2’;%转置
figure%画图
xk = 2;
plot(1:length(outtest),outtest,‘r–’,1:length(outtest),s_bp2,‘b.-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
legend(‘真实值’,‘预测值’)%图例
title(‘神经网预测真实值与预测值对比’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘成交额’)%纵坐标标题
%% 误差分析
j_error = abs(outtest - s_bp2’); %绝对误差
x_error = abs(outtest - s_bp2’)./outtest.*100;%相对误差
figure%画图
plot(1:length(x_error),x_error,‘ko-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
title(‘测试样本相对误差图%’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘相对误差%’)%纵坐标标题
%% 显示
disp(‘测试真实值’)
outtest
disp(‘测试预测值’)
s_bp2
disp(‘相对误差%’)
x_error
zh_bp = [outtest; s_bp2’; x_error];
save zh_bp zh_bp

⛄四、运行结果

在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]郭利进,乔志忠.基于遗传算法优化BP神经网络的粮食温度预测研究[J].粮食与油脂. 2023,36(01)

这篇关于【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893286

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、