【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】

2024-04-11 06:18

本文主要是介绍【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⛄一、遗传算法简介

1 引言
在这里插入图片描述
在这里插入图片描述
2 遗传算法理论
2.1 遗传算法的生物学基础
在这里插入图片描述
在这里插入图片描述
2.2 遗传算法的理论基础
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 遗传算法的基本概念
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.4 标准的遗传算法
在这里插入图片描述
在这里插入图片描述
2.5 遗传算法的特点
在这里插入图片描述
在这里插入图片描述
2.6 遗传算法的改进方向
在这里插入图片描述
3 遗传算法流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4 关键参数说明
在这里插入图片描述

⛄二、BP神经网络简介

1 BP神经网络预测原理简介
BP 神经网络是一种多层前馈神经网络,常用的为输入层-单隐含层-输出层的三层结构,如下图所示。
在这里插入图片描述
BP神经网络训练的主要思想:输入的信号特征数据先映射到隐含层(激活函数实现),再映射到输出层(默认采用线性传递函数),得到期望输出值。将期望输出值和实际测量值做比较,计算误差函数J,再将误差反向传播,通过梯度下降等算法来调节BP网络的权值和阈值。重复该过程,直到满足设定的目标误差或者最大迭代次数等终止准则,停止训练。

⛄三、部分源代码

clear all
clc
close all
tic
%% 全局变量

global pn
global tn
global R
global S2
global S1
global S
S1 = 12;
%% 数据处理
load data.mat
X=xlsread(‘数据.xls’);
data = [data X(:,end)];
% 85%用于训练,15%进行预测
nn = floor(0.85*size(data,1));
input=data(1:nn,1:3)‘;
output=data(1:nn,end)’;
input_test=data(nn+1:end,1:3)‘;
output_test=data(nn+1:end,end)’;

M =size(input,2); %输入节点个数
N =size(output,2);%输出节点个数
%% 训练数据
p = input;
t = output;
[pn,minp,maxp,tn,mint,maxt] =premnmx(p,t);%归一化
%% 建立神经网络
net = newff(minmax(pn),[S1,1],{‘tansig’,‘purelin’});
net.trainParam.show = 50;
net.trainParam.lr = 0.1;
net.trainParam.epochs = 1000;
net.trainParam.goal =1e-10;
[net,tr] = train(net,pn,tn);
%% 遗传操作
R = size(p,1);
S2= size(t,1);
S = RS1+S1S2+S1+S2;
aa = ones(S,1)*[-1 1];
popu = 50;
initPpp = initializega(popu,aa,‘gabpEval’);
gen = 500;
[x,endPop,bPop,trace] = ga(aa,‘gabpEval’,[],initPpp,[1e-6 1 1],‘maxGenTerm’,gen,…
‘normGeomSelect’,[0.09],[‘arithXover’],[2],‘nonUnifMutation’,[2 gen 3]);
%% 画图迭代图
figure(1)
plot(trace(:,1),1./trace(:,3),‘r-’);
hold on
grid on
plot(trace(:,1),1./trace(:,2),‘b-’);
xlabel(‘迭代数’)
ylabel(‘均方误差’)
title(‘均方误差曲线图’)
figure(2)
plot(trace(:,1),trace(:,3),‘r-’);
hold on
grid on
plot(trace(:,1),trace(:,2),‘b-’);
xlabel(‘迭代数’)
ylabel(‘适应度函数值’)
title(‘适应度函数迭代曲线图’)
[W1,B1,W2,B2,val] = gadecod(x);
W1;
W2;
B1;
B2;
net.IW{1,1} = W1;
net.LW{2,1} = W2;

net = train(net,pn,tn);
k = input_test;
kn = tramnmx(k,minp,maxp);
s_bp = sim(net,kn);
s_bp22 = postmnmx(s_bp,mint,maxt);
toc
load gabp.mat
xk=2;
figure
plot(1:length(output_test),output_test,‘r-*’,1:length(output_test),s_bp22,‘b-o’,‘linewidth’,xk)
grid on%加网格
legend(‘真实值’,‘预测值’)%图例
title(‘神经网预测真实值与预测值对比’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘成交额’)%纵坐标标题
xk = 2;
error2 = abs(s_bp22 - output_test)./output_test.*100;
figure%画图
plot(1:length(error2),error2,‘ko-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
title(‘测试样本相对误差图%’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘相对误差%’)%纵坐标标题
zh_gabp = [output_test ;s_bp22; error2]
save zh_gabp zh_gabp
function [W1,B1,W2,B2,val] = gadecod(x)
global pn;
global tn;
global R;
global S2;
global S1;
global S

for i = 1 : S1
for k = 1 : R
W1(i,k) = x(R*(i-1)+k);
end
end

for i = 1 : S2
for k = 1 : S1
W2(i,k) = x(S1*(i-1)+k+R*S1);
end
end

for i = 1: S1
B1(i,1) = x((RS1+S1S2)+i);
end

for i = 1: S2
B2(i,1) = x((RS1+S1S2+S1)+i);
end

A1 = tansig(W1pn,B1);
A2 = purelin(W2
A1,B2);
SE = sumsqr(tn-A2);
val = 1/SE;
%% 训练模型
[net,tr] = train(net,pn,tn);%训练网络
nihe = sim(net,pn);%训练输出
nihe2 = postmnmx(nihe,mint,maxt);%训练输出反归一化
%% 预测
s_bp = sim(net,kn);%预测
s_bp2 = postmnmx(s_bp,mint,maxt);%预测输出反归一化
s_bp2 = s_bp2’;%转置
figure%画图
xk = 2;
plot(1:length(outtest),outtest,‘r–’,1:length(outtest),s_bp2,‘b.-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
legend(‘真实值’,‘预测值’)%图例
title(‘神经网预测真实值与预测值对比’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘成交额’)%纵坐标标题
%% 误差分析
j_error = abs(outtest - s_bp2’); %绝对误差
x_error = abs(outtest - s_bp2’)./outtest.*100;%相对误差
figure%画图
plot(1:length(x_error),x_error,‘ko-’,‘linewidth’,xk)%测试输出与真实值的对比图
grid on%加网格
title(‘测试样本相对误差图%’)%标题
xlabel(‘样本’)%横坐标标题
ylabel(‘相对误差%’)%纵坐标标题
%% 显示
disp(‘测试真实值’)
outtest
disp(‘测试预测值’)
s_bp2
disp(‘相对误差%’)
x_error
zh_bp = [outtest; s_bp2’; x_error];
save zh_bp zh_bp

⛄四、运行结果

在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]郭利进,乔志忠.基于遗传算法优化BP神经网络的粮食温度预测研究[J].粮食与油脂. 2023,36(01)

这篇关于【股价预测】基于matlab遗传算法优化BP神经网络预测股价【含Matlab源码 1250期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893286

相关文章

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k