【VRP】基于matlab遗传算法求解多车辆路径规划问题【含Matlab源码 1249期】

2024-04-11 06:18

本文主要是介绍【VRP】基于matlab遗传算法求解多车辆路径规划问题【含Matlab源码 1249期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、VRP简介

1 VRP基本原理
车辆路径规划问题(Vehicle Routing Problem,VRP)是运筹学里重要的研究问题之一。VRP关注有一个供货商与K个销售点的路径规划的情况,可以简述为:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。
VRP的图例如下所示:
在这里插入图片描述
2 问题属性与常见问题
车辆路径问题的特性比较复杂,总的来说包含四个方面的属性:
(1)地址特性包括:车场数目、需求类型、作业要求。
(2)车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。
(3)问题的其他特性。
(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。

3 常见问题有以下几类:
(1)旅行商问题
(2)带容量约束的车辆路线问题(CVRP)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该模型很难拓展到VRP的其他场景,并且不知道具体车辆的执行路径,因此对其模型继续改进。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(3)带时间窗的车辆路线问题
由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。带时间窗车辆路径问题(VRPTW)是在VRP上加上了客户的被访问的时间窗约束。在VRPTW问题中,除了行驶成本之外, 成本函数还要包括由于早到某个客户而引起的等待时间和客户需要的服务时间。在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同。
在这里插入图片描述
在这里插入图片描述
模型2(参考2017 A generalized formulation for vehicle routing problems):
该模型为2维决策变量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(4)收集和分发问题
(5)多车场车辆路线问题
参考(2005 lim,多车场车辆路径问题的遗传算法_邹彤, 1996 renaud)
在这里插入图片描述
由于车辆是同质的,这里的建模在变量中没有加入车辆的维度。
在这里插入图片描述
在这里插入图片描述
(6)优先约束车辆路线问题
(7)相容性约束车辆路线问题
(8)随机需求车辆路线问题

4 解决方案
(1)数学解析法
(2)人机交互法
(3)先分组再排路线法
(4)先排路线再分组法
(5)节省或插入法
(6)改善或交换法
(7)数学规划近似法
(8)启发式算法

5 VRP与VRPTW对比
在这里插入图片描述

⛄二、遗传算法简介

1 引言
在这里插入图片描述
在这里插入图片描述
2 遗传算法理论
2.1 遗传算法的生物学基础
在这里插入图片描述
在这里插入图片描述
2.2 遗传算法的理论基础
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 遗传算法的基本概念
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.4 标准的遗传算法
在这里插入图片描述
在这里插入图片描述
2.5 遗传算法的特点
在这里插入图片描述
在这里插入图片描述
2.6 遗传算法的改进方向
在这里插入图片描述
3 遗传算法流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4 关键参数说明
在这里插入图片描述

⛄三、部分源代码

clear
clc
close all
dmax=40; %单车的最大行驶距离
qmax=30; %单车的最大货物携带量
c0=10; %单车的出发成本
c1=1; %单车的行驶成本
X=[18.70,15.29
16.47,8.45
20.07,10.14
19.39,13.37
25.27,14.24
22.00,10.04
25.47,17.02
15.79,15.10
16.60,12.38
14.05,18.12
17.53,17.38
23.52,13.45
19.41,18.13
22.11,12.51
11.25,11.04
14.17,9.76
24.00,19.89
12.21,14.50];
Q=[0 3.0 2.5 5.5 3.0 1.5 4.0 2.5 3.0 2.0 2.5 3.5 3.0 5.0 4.5 2.0 3.5 4.0];
NIND=100; %种群大小
MAXGEN=200;
Pc=0.9; %交叉概率
Pm=0.05; %变异概率
GGAP=0.9; %代沟
D=Distance(X); %生成距离矩阵
N=size(D,1); %客户点数
K=10; %初始的车辆数
%生成初始种群
Chrom=InitPop(NIND,N,K);
%优化
gen=1;
figure(1);
hold on;
box on;
xlim([0,MAXGEN])
title(‘优化过程’)
xlabel(‘代数’)
ylabel(‘最优值’)
ObjV = PathCost(Chrom,Q,D,dmax,qmax,c1,c0,K); %计算总花费
[preObjV,BestIndex] = min(ObjV); %找出最小的花费
BestChrom = Chrom(BestIndex,:);

while gen<MAXGEN
%计算适应度
ObjV=PathCost(Chrom,Q,D,dmax,qmax,c1,c0,K);
line([gen-1,gen],[preObjV,min(ObjV)]);pause(0.001)
[preObjV,BestIndex]=min(ObjV);
BestObjV(gen)=preObjV;
AveObjV(gen)=sum(ObjV)/NIND;
BestChrom(gen,:) = Chrom(BestIndex,:);

FitnV = Fitness(ObjV);
%选择
SelCh1 = Select(Chrom,FitnV,GGAP);
%交叉
SelCh2 = Recombin(SelCh1,Pc);%变异
SelCh3 = Mutate(SelCh2,Pm);
%逆转操作
SelCh4 = Reverse(SelCh3,D,Q,dmax,qmax,c1,c0,K);
%重新插入新的种群
Chrom =Reins(Chrom,SelCh4,ObjV);
gen = gen+1;

end
%画出最优解的路线图
ObjV=PathCost(Chrom,Q,D,dmax,qmax,c1,c0,K);
[minObjV,minInd]=min(ObjV);
DrawPath(Chrom(minInd(1)😅,X);
%输出最优解
disp(‘最优服务顺序:’)
p=OutputPath(Chrom(minInd(1)😅);
disp([‘总花费:’,num2str(minObjV)]);
s=0;
R=Chrom(minInd(1)😅;
for i=1:size(R,2)-1
s=s+D(R(i),R(i+1));
end
disp([‘总里程:’,num2str(s)]);
function NewChrIx=Sus(FitnV,Nsel)
%%随机遍历抽样
%输入
%FitnV 适应度值,列向量
%Nsel 被选择个体的数目
%输出
%NewChrIx 被选择个体的索引号
[Nind,ans]=size(FitnV);
cumfit = cumsum(FitnV);
trials = cumfit(Nind)/Nsel*(rand+(0:Nsel-1)‘);
Mf=cumfit(:,ones(1,Nsel));
Mt=trials(:,ones(1,Nind))’;
[NewChrIx,ans]=find(Mt<Mf&[zeros(1,Nsel);Mf(1:Nind-1,:)]<=Mt);
[ans,shut]=sort(rand(Nsel,1));
NewChrIx=NewChrIx(shut);
function varargout = dsxy2figxy(varargin)
if length(varargin{1}) == 1 && ishandle(varargin{1}) …
&& strcmp(get(varargin{1},‘type’),‘axes’)
hAx = varargin{1};
varargin = varargin(2:end);
else
hAx = gca;
end;
if length(varargin) == 1
pos = varargin{1};
else
[x,y] = deal(varargin{:});
end
axun = get(hAx,‘Units’);
set(hAx,‘Units’,‘normalized’);
axpos = get(hAx,‘Position’);
axlim = axis(hAx);
axwidth = diff(axlim(1:2));
axheight = diff(axlim(3:4));
if exist(‘x’,‘var’)
varargout{1} = (x - axlim(1)) * axpos(3) / axwidth + axpos(1);
varargout{2} = (y - axlim(3)) * axpos(4) / axheight + axpos(2);
else
pos(1) = (pos(1) - axlim(1)) / axwidth * axpos(3) + axpos(1);
pos(2) = (pos(2) - axlim(3)) / axheight * axpos(4) + axpos(2);
pos(3) = pos(3) * axpos(3) / axwidth;
pos(4) = pos(4) * axpos(4 )/ axheight;
varargout{1} = pos;
end
set(hAx,‘Units’,axun)
function DrawPath(Chrom,X)
%%画路线图函数
%输入
%Chrom 待画路线
%X 各服务点的坐标位置

R=Chrom;
figure;
hold on
plot(X(:,1),X(:,2),‘o’,‘color’,[0.5,0.5,0.5])
plot(X(Chrom(1,1),1),X(Chrom(1,1),2),‘rv’,‘MarkerSize’,20)
for i=1:size(X,1)
text(X(i,1)+0.05,X(i,2)+0.05,num2str(i),‘color’,[1,0,0]);
end
A=X(R,:);
row=size(A,1);
for i=2:row
[arrowx,arrowy]=dsxy2figxy(gca,A(i-1:i,1),A(i-1:i,2));
annotation(‘textarrow’,arrowx,arrowy,‘HeadWidth’,8,‘color’,[0,0,1]);
end
hold off
xlabel(‘横坐标’)
ylabel(‘纵坐标’)
title(‘轨迹图’)
box on

⛄四、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]马硕.基于非支配排序遗传算法的多目标车辆路径规划研究[J].大连海事大学

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【VRP】基于matlab遗传算法求解多车辆路径规划问题【含Matlab源码 1249期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893285

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错