【MDVRP】基于matlab遗传算法求解多仓库车辆路径规划问题【含Matlab源码 1481期】

本文主要是介绍【MDVRP】基于matlab遗传算法求解多仓库车辆路径规划问题【含Matlab源码 1481期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⛄一、VRP简介

1 VRP基本原理
车辆路径规划问题(Vehicle Routing Problem,VRP)是运筹学里重要的研究问题之一。VRP关注有一个供货商与K个销售点的路径规划的情况,可以简述为:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。
VRP的图例如下所示:
在这里插入图片描述
2 问题属性与常见问题
车辆路径问题的特性比较复杂,总的来说包含四个方面的属性:
(1)地址特性包括:车场数目、需求类型、作业要求。
(2)车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。
(3)问题的其他特性。
(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。

3 常见问题有以下几类:
(1)旅行商问题
(2)带容量约束的车辆路线问题(CVRP)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该模型很难拓展到VRP的其他场景,并且不知道具体车辆的执行路径,因此对其模型继续改进。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(3)带时间窗的车辆路线问题
由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。带时间窗车辆路径问题(VRPTW)是在VRP上加上了客户的被访问的时间窗约束。在VRPTW问题中,除了行驶成本之外, 成本函数还要包括由于早到某个客户而引起的等待时间和客户需要的服务时间。在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同。
在这里插入图片描述
在这里插入图片描述
模型2(参考2017 A generalized formulation for vehicle routing problems):
该模型为2维决策变量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(4)收集和分发问题
(5)多车场车辆路线问题
参考(2005 lim,多车场车辆路径问题的遗传算法_邹彤, 1996 renaud)
在这里插入图片描述
由于车辆是同质的,这里的建模在变量中没有加入车辆的维度。
在这里插入图片描述
在这里插入图片描述
(6)优先约束车辆路线问题
(7)相容性约束车辆路线问题
(8)随机需求车辆路线问题

4 解决方案
(1)数学解析法
(2)人机交互法
(3)先分组再排路线法
(4)先排路线再分组法
(5)节省或插入法
(6)改善或交换法
(7)数学规划近似法
(8)启发式算法

5 VRP与VRPTW对比
在这里插入图片描述

⛄二、遗传算法简介

1 引言
在这里插入图片描述
在这里插入图片描述
2 遗传算法理论
2.1 遗传算法的生物学基础
在这里插入图片描述
在这里插入图片描述
2.2 遗传算法的理论基础
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 遗传算法的基本概念
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.4 标准的遗传算法
在这里插入图片描述
在这里插入图片描述
2.5 遗传算法的特点
在这里插入图片描述
在这里插入图片描述
2.6 遗传算法的改进方向
在这里插入图片描述
3 遗传算法流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4 关键参数说明
在这里插入图片描述

⛄三、部分源代码

%遗传算法 VRP 问题 Matlab实现

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%tic%计时器
clear;
clc

%W=80; %每辆车的载重量
%Citynum=50; %客户数量
%Stornum=4;%仓库个数
%C %%第二三列 客户坐标,第四列 客户需求 51,52,53,54为四个仓库

%load(‘p01-n50-S4-w80.mat’); %载入测试数据,n客户服务点数,S仓库个数,w车辆载重量
%load(‘p02-n50-S4-w160.mat’);
%load(‘p04-n100-S2-w100.mat’);
%load(‘p05-n100-S2-w200.mat’);
load(‘p06-n100-S3-w100.mat’);
%load(‘p12-n80-S2-w60.mat’);
% load(‘ppp-n30-s3-w-60.mat’)
%load(‘ppp-n25-s3-w-50.mat’)

w=[];%存储每代的最短总路径
G=100;%种群大小
v1=60;
v2=300;

[dislist,Clist]=vrp©;%dislist为距离矩阵 ,Clist为点坐标矩阵及客户需
L=[];%存每个种群的回路长度

for i=1:G
Parent(i,:)=randperm(Citynum);%随机产生路径
L(i,1)=curlist(Citynum,Clist(:,4),W,Parent(i,:),Stornum,dislist);
end

Pc=0.8;%交叉比率
Pm=0.3;%变异比率
species=Parent;%种群
children=[];%子代
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(‘正在运行,时间比较长,请稍等…’)
g=50;
for generation=1:g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
fprintf(‘\n正在进行第%d次迭代,共%d次…’,generation,g);
Parent=species;%子代变成父代
children=[];%子代
Lp=L;

%选择交叉父代
[n m]=size(Parent);

                                                                                                            %交叉,代处理

for i=1:n
for j=i:n
if rand<Pc
crossover
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[n m]=size(Parent);
for i=1:n
if rand<Pm
parent=Parent(i,:);%变异个体
X=floor(randCitynum)+1;
Y=floor(rand
Citynum)+1;
Z=parent(X);
parent(X)=parent(Y);
parent(Y)=Z; %基因交换变异
children=[children;parent];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%计算子代适应值(即路径长度) (这块用时比较长)
[m n]=size(children);
Lc=zeros(m,1);%子代适应值

for i=1:m
Lc(i,1)=curlist(Citynum,Clist(:,4),W,children(i,:),Stornum,dislist);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%淘汰子代 剩余前G个最优解
[m n]=size(children);
if(m>G)
[m n]=sort(Lc);
children=children(n(1:G)😅;
Lc=Lc(n(1:G));
end
%OX顺序交叉策略
P1=Parent(i,:);
P2=Parent(j,:);

%选择切点,交换中间部分 并且 修复基因
X=floor(rand*(m-2))+2;
Y=floor(rand*(m-2))+2;

if X>Y
Z=X;
X=Y;
Y=Z;
end

change1=P1(X:Y);
change2=P2(X:Y);
%开始修复 Order Crossover
%1.列出基因 
p1=[P1(Y+1:end),P1(1:X-1),change1];
p2=[P2(Y+1:end),change2,P2(1:X-1)];%2.1删除已有基因 P1
for i=1:length(change2)p1(find(p1==change2(i)))=[];
end
%2.2删除已由基因 P2
for i=1:length(change1)p2(find(p2==change1(i)))=[];
endP1=[p1(m-Y+1:end),change2,p1(1:m-Y)];
%3.1修复 P2
P2=[change1,p2(m-Y+1:end),p2(1:m-Y)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%加入子代
children=[children;P1;P2];
function L = curlist(Citynum,wlist,W,route,Stornum,dislist)
temproute=route;
tempweight=0;
Storage=[];
L=0;%存储这个种群的回路长度
i=1;
start=i;
insert=2;
while(i<=Citynum)
tempweight=tempweight+wlist(temproute(i));
if(tempweight>W || i==Citynum)
if(tempweight>W)
i=i-1;
end
templength=[];
for j=Citynum+1:Citynum+Stornum%当一辆车装满时分别计算距离各仓库,哪个距离最短,然后就分到哪个仓库,
ls=CalDist(dislist,[j,temproute(start:i),j],Citynum);
templength=[templength,ls];
end
[ls1,ls2]=min(templength);
L=L+ls1;
i=i+1;
start=i;
tempweight=0;
continue;
else
i=i+1;
end
end

end

⛄四、运行结果

在这里插入图片描述
在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]胡小建,杨智.基于混合遗传算法的多拣货小车路径规划研究[J].合肥工业大学学报(自然科学版). 2022,45(12)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

这篇关于【MDVRP】基于matlab遗传算法求解多仓库车辆路径规划问题【含Matlab源码 1481期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893214

相关文章

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操