【MDVRP】基于matlab遗传算法求解多仓库车辆路径规划问题【含Matlab源码 1481期】

本文主要是介绍【MDVRP】基于matlab遗传算法求解多仓库车辆路径规划问题【含Matlab源码 1481期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

⛄一、VRP简介

1 VRP基本原理
车辆路径规划问题(Vehicle Routing Problem,VRP)是运筹学里重要的研究问题之一。VRP关注有一个供货商与K个销售点的路径规划的情况,可以简述为:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。
VRP的图例如下所示:
在这里插入图片描述
2 问题属性与常见问题
车辆路径问题的特性比较复杂,总的来说包含四个方面的属性:
(1)地址特性包括:车场数目、需求类型、作业要求。
(2)车辆特性包括:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束。
(3)问题的其他特性。
(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。

3 常见问题有以下几类:
(1)旅行商问题
(2)带容量约束的车辆路线问题(CVRP)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
该模型很难拓展到VRP的其他场景,并且不知道具体车辆的执行路径,因此对其模型继续改进。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(3)带时间窗的车辆路线问题
由于VRP问题的持续发展,考虑需求点对于车辆到达的时间有所要求之下,在车辆途程问题之中加入时窗的限制,便成为带时间窗车辆路径问题(VRP with Time Windows, VRPTW)。带时间窗车辆路径问题(VRPTW)是在VRP上加上了客户的被访问的时间窗约束。在VRPTW问题中,除了行驶成本之外, 成本函数还要包括由于早到某个客户而引起的等待时间和客户需要的服务时间。在VRPTW中,车辆除了要满足VRP问题的限制之外,还必须要满足需求点的时窗限制,而需求点的时窗限制可以分为两种,一种是硬时窗(Hard Time Window),硬时窗要求车辆必须要在时窗内到达,早到必须等待,而迟到则拒收;另一种是软时窗(Soft Time Window),不一定要在时窗内到达,但是在时窗之外到达必须要处罚,以处罚替代等待与拒收是软时窗与硬时窗最大的不同。
在这里插入图片描述
在这里插入图片描述
模型2(参考2017 A generalized formulation for vehicle routing problems):
该模型为2维决策变量
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(4)收集和分发问题
(5)多车场车辆路线问题
参考(2005 lim,多车场车辆路径问题的遗传算法_邹彤, 1996 renaud)
在这里插入图片描述
由于车辆是同质的,这里的建模在变量中没有加入车辆的维度。
在这里插入图片描述
在这里插入图片描述
(6)优先约束车辆路线问题
(7)相容性约束车辆路线问题
(8)随机需求车辆路线问题

4 解决方案
(1)数学解析法
(2)人机交互法
(3)先分组再排路线法
(4)先排路线再分组法
(5)节省或插入法
(6)改善或交换法
(7)数学规划近似法
(8)启发式算法

5 VRP与VRPTW对比
在这里插入图片描述

⛄二、遗传算法简介

1 引言
在这里插入图片描述
在这里插入图片描述
2 遗传算法理论
2.1 遗传算法的生物学基础
在这里插入图片描述
在这里插入图片描述
2.2 遗传算法的理论基础
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.3 遗传算法的基本概念
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.4 标准的遗传算法
在这里插入图片描述
在这里插入图片描述
2.5 遗传算法的特点
在这里插入图片描述
在这里插入图片描述
2.6 遗传算法的改进方向
在这里插入图片描述
3 遗传算法流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4 关键参数说明
在这里插入图片描述

⛄三、部分源代码

%遗传算法 VRP 问题 Matlab实现

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%tic%计时器
clear;
clc

%W=80; %每辆车的载重量
%Citynum=50; %客户数量
%Stornum=4;%仓库个数
%C %%第二三列 客户坐标,第四列 客户需求 51,52,53,54为四个仓库

%load(‘p01-n50-S4-w80.mat’); %载入测试数据,n客户服务点数,S仓库个数,w车辆载重量
%load(‘p02-n50-S4-w160.mat’);
%load(‘p04-n100-S2-w100.mat’);
%load(‘p05-n100-S2-w200.mat’);
load(‘p06-n100-S3-w100.mat’);
%load(‘p12-n80-S2-w60.mat’);
% load(‘ppp-n30-s3-w-60.mat’)
%load(‘ppp-n25-s3-w-50.mat’)

w=[];%存储每代的最短总路径
G=100;%种群大小
v1=60;
v2=300;

[dislist,Clist]=vrp©;%dislist为距离矩阵 ,Clist为点坐标矩阵及客户需
L=[];%存每个种群的回路长度

for i=1:G
Parent(i,:)=randperm(Citynum);%随机产生路径
L(i,1)=curlist(Citynum,Clist(:,4),W,Parent(i,:),Stornum,dislist);
end

Pc=0.8;%交叉比率
Pm=0.3;%变异比率
species=Parent;%种群
children=[];%子代
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(‘正在运行,时间比较长,请稍等…’)
g=50;
for generation=1:g
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tic
fprintf(‘\n正在进行第%d次迭代,共%d次…’,generation,g);
Parent=species;%子代变成父代
children=[];%子代
Lp=L;

%选择交叉父代
[n m]=size(Parent);

                                                                                                            %交叉,代处理

for i=1:n
for j=i:n
if rand<Pc
crossover
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[n m]=size(Parent);
for i=1:n
if rand<Pm
parent=Parent(i,:);%变异个体
X=floor(randCitynum)+1;
Y=floor(rand
Citynum)+1;
Z=parent(X);
parent(X)=parent(Y);
parent(Y)=Z; %基因交换变异
children=[children;parent];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%计算子代适应值(即路径长度) (这块用时比较长)
[m n]=size(children);
Lc=zeros(m,1);%子代适应值

for i=1:m
Lc(i,1)=curlist(Citynum,Clist(:,4),W,children(i,:),Stornum,dislist);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%淘汰子代 剩余前G个最优解
[m n]=size(children);
if(m>G)
[m n]=sort(Lc);
children=children(n(1:G)😅;
Lc=Lc(n(1:G));
end
%OX顺序交叉策略
P1=Parent(i,:);
P2=Parent(j,:);

%选择切点,交换中间部分 并且 修复基因
X=floor(rand*(m-2))+2;
Y=floor(rand*(m-2))+2;

if X>Y
Z=X;
X=Y;
Y=Z;
end

change1=P1(X:Y);
change2=P2(X:Y);
%开始修复 Order Crossover
%1.列出基因 
p1=[P1(Y+1:end),P1(1:X-1),change1];
p2=[P2(Y+1:end),change2,P2(1:X-1)];%2.1删除已有基因 P1
for i=1:length(change2)p1(find(p1==change2(i)))=[];
end
%2.2删除已由基因 P2
for i=1:length(change1)p2(find(p2==change1(i)))=[];
endP1=[p1(m-Y+1:end),change2,p1(1:m-Y)];
%3.1修复 P2
P2=[change1,p2(m-Y+1:end),p2(1:m-Y)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%加入子代
children=[children;P1;P2];
function L = curlist(Citynum,wlist,W,route,Stornum,dislist)
temproute=route;
tempweight=0;
Storage=[];
L=0;%存储这个种群的回路长度
i=1;
start=i;
insert=2;
while(i<=Citynum)
tempweight=tempweight+wlist(temproute(i));
if(tempweight>W || i==Citynum)
if(tempweight>W)
i=i-1;
end
templength=[];
for j=Citynum+1:Citynum+Stornum%当一辆车装满时分别计算距离各仓库,哪个距离最短,然后就分到哪个仓库,
ls=CalDist(dislist,[j,temproute(start:i),j],Citynum);
templength=[templength,ls];
end
[ls1,ls2]=min(templength);
L=L+ls1;
i=i+1;
start=i;
tempweight=0;
continue;
else
i=i+1;
end
end

end

⛄四、运行结果

在这里插入图片描述
在这里插入图片描述

⛄五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]胡小建,杨智.基于混合遗传算法的多拣货小车路径规划研究[J].合肥工业大学学报(自然科学版). 2022,45(12)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

这篇关于【MDVRP】基于matlab遗传算法求解多仓库车辆路径规划问题【含Matlab源码 1481期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893214

相关文章

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

maven异常Invalid bound statement(not found)的问题解决

《maven异常Invalidboundstatement(notfound)的问题解决》本文详细介绍了Maven项目中常见的Invalidboundstatement异常及其解决方案,文中通过... 目录Maven异常:Invalid bound statement (not found) 详解问题描述可

idea粘贴空格时显示NBSP的问题及解决方案

《idea粘贴空格时显示NBSP的问题及解决方案》在IDEA中粘贴代码时出现大量空格占位符NBSP,可以通过取消勾选AdvancedSettings中的相应选项来解决... 目录1、背景介绍2、解决办法3、处理完成总结1、背景介绍python在idehttp://www.chinasem.cna粘贴代码,出

SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)

《SpringBoot整合Kafka启动失败的常见错误问题总结(推荐)》本文总结了SpringBoot项目整合Kafka启动失败的常见错误,包括Kafka服务器连接问题、序列化配置错误、依赖配置问题、... 目录一、Kafka服务器连接问题1. Kafka服务器无法连接2. 开发环境与生产环境网络不通二、序

SpringSecurity中的跨域问题处理方案

《SpringSecurity中的跨域问题处理方案》本文介绍了跨域资源共享(CORS)技术在JavaEE开发中的应用,详细讲解了CORS的工作原理,包括简单请求和非简单请求的处理方式,本文结合实例代码... 目录1.什么是CORS2.简单请求3.非简单请求4.Spring跨域解决方案4.1.@CrossOr

nacos服务无法注册到nacos服务中心问题及解决

《nacos服务无法注册到nacos服务中心问题及解决》本文详细描述了在Linux服务器上使用Tomcat启动Java程序时,服务无法注册到Nacos的排查过程,通过一系列排查步骤,发现问题出在Tom... 目录简介依赖异常情况排查断点调试原因解决NacosRegisterOnWar结果总结简介1、程序在

解决java.util.RandomAccessSubList cannot be cast to java.util.ArrayList错误的问题

《解决java.util.RandomAccessSubListcannotbecasttojava.util.ArrayList错误的问题》当你尝试将RandomAccessSubList... 目录Java.util.RandomAccessSubList cannot be cast to java.

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

C++ 多态性实战之何时使用 virtual 和 override的问题解析

《C++多态性实战之何时使用virtual和override的问题解析》在面向对象编程中,多态是一个核心概念,很多开发者在遇到override编译错误时,不清楚是否需要将基类函数声明为virt... 目录C++ 多态性实战:何时使用 virtual 和 override?引言问题场景判断是否需要多态的三个关