【疾病分类】基于matlab LBP果实病害检测分类【含Matlab源码 1714期】

2024-04-11 04:38

本文主要是介绍【疾病分类】基于matlab LBP果实病害检测分类【含Matlab源码 1714期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、LBP简介

1 基本LBP算子
基本LBP算子其定义为在3×3像素块中,以其中心像素点的灰度值作为阈值,与周围8个相邻的像素点的灰度值进行比较,若周围某一像素点的值大于等于阈值,则该像素点记为“1”,否则记为“0”。通过对邻域内的8个像素点作比较可产生一个8位二进制数,将其转为十进制数即为该3×3像素块中心像素点的LBP值(共256种),如图1所示。
在这里插入图片描述
图1 原始LBP值的定义
为了改善LBP尺度大小的局限性以适应不同尺度和频率的纹理特征,Ojala等[7]将LBP算子从3×3邻域扩展到不同半径大小的圆形邻域。则有:
在这里插入图片描述
式中,R表示圆形邻域的半径,P表示中心像素点邻域内采样点个数,gi表示邻域内第i个像素点的灰度值,gc表示中心像素点的灰度值。若圆形LBP的邻域点不在像素中心位置,则通过双线性插值确定其值。

2 缺陷图像的SVM分类
2.1 SVM模型

SVM最早由Vapnik等提出[10],属于机器学习中的监督学习,是一种对数据进行二元分类的广义线性分类器,其对小样本分类和多类分类有着良好的分类效果。其决策边界是对学习样本求解的最大边距超平面。

SVM方法是从两类模式识别时,线性可分情况下的最优分类面提出的。设大小为n、且每个训练样本向量维数为N的两类训练样本集{(xi,yi)},i=1,2,⋯,n,xi∈RN,yi∈{+1,−1}为模式标号,将建立线性SVM的问题转化为求解二次凸规划问题,即:
在这里插入图片描述
式中,ω为权值向量,b为类阈值;C为惩罚因子,表示存在不能被超平面正确分类的样本;ξi为松弛因子,表示存在分类间隔和错误率之间的折中。

Vapnik等[11]给出最优超平面的决策分类函数为:
在这里插入图片描述
式中,sgn为符号函数,λi称为Lagrange乘子,xi为支持向量。

对于非线性问题,通过引入非线性映射函数Φ(xi)将样本数据映射到高维空间,然后在这个特征空间中利用结构风险最小化原则构造最优分类超平面。为了避免产生维数灾难,故引入核函数:
在这里插入图片描述
选择适当的核函数K(xi,yj)实现某一非线性变换后的线性分类,此时,相应的分类函数为:
在这里插入图片描述
式中,xi为样本数据中的支持向量,λi称为Lagrange乘子。这就是SVM,由分类函数f(x)的正负即可判定x所属类别。

对于多分类问题,可将SVM二分类进行扩展为多分类。常用的方法有,一是通过一次构造包含多个最优超平面的模型实现对样本的多分类,看似简单,但其计算复杂,实现起来较为困难;二是组合多个二分类SVM实现多分类,本文采用第二种方法。

2.2 SVM分类结果
缺陷识别分类的步骤如下:
(1) 样本数据集的准备。
(2) 核函数和相关参数选取。目前常用的核函数形式主要有线性(linear)核函数、Sigmoid核函数、多项式(polyn-omial)核函数和径向基型(radial basis function)核函数等。径向基核函数非线性能力强,也是目前应用最广泛的核函数,本文选径向基核函数作为分类器核函数。通过调整惩罚因子C和径向基核函数的核函数参数γ来达到最佳分类率;
(3) 缺陷的识别分类。

⛄二、部分源代码

clc;
clear all;
close all;
warning off all;

%% Read input image

[f,p] = uigetfile(‘.jpg;.bmp’);
I = imread([p f]);
I = imresize(I,[256 256]);

%% rgb to lab color space conversion

im = I;
R = im(:,:,1);
G = im(:,:,2);
B = im(:,:,3);

figure(‘name’,‘Input Image result’);
subplot(221);imshow(I,[]);title(‘Input Image’);
subplot(222);imshow(R,[]);title(‘Red band Image’);
subplot(223);imshow(G,[]);title(‘Green band Image’);
subplot(224);imshow(B,[]);title(‘Blue Image’);

[L, a, b] = RGB2Lab(R, G, B);

figure(‘name’,‘RGB to LAB color space result’);
subplot(131);imshow(L,[]);title(‘L color space result’);
subplot(132);imshow(a,[]);title(‘a color space result’);
subplot(133);imshow(b,[]);title(‘b color space result’);
labb = cat(3,L,a,b);
cform = makecform(‘srgb2lab’);
lab = applycform(I,cform);

figure(‘name’,‘Input Image & Lab Color space Result’);
subplot(121);imshow(I,[]);title(‘Input RGB image’);
subplot(122);imshow(lab);title(‘Lab color space result’);

ll = lab(:,:,1);
aa = lab(:,:,2);
bb = lab(:,:,3);

%% K-Means segmentation

cl = 4;
[ABC,c] = k_means(ll,cl);
[d,e]=size©;
for i=1:d
for j=1:e
if c(i,j)==3
new(i,j)=0;
else
new(i,j)=c(i,j);
end
end
end
function [mu,mask]=k_means(ima,k)
%% check image
%cluster center initialization
ima=double(ima);
copy=ima; % make a copy
ima=ima(😃; % vectorize ima
mi=min(ima); % deal with negative
ima=ima-mi+1; % and zero values

s=length(ima);

%% create image histogram

m=max(ima)+1;

h=zeros(1,m);
hc=zeros(1,m);

for i=1:s
if(ima(i)>0) h(ima(i))=h(ima(i))+1;
end;
end
ind=find(h);
hl=length(ind);

%% initiate centroids

mu=(1:k)*m/(k+1);
fprintf(‘Initiated centroid value = %f\n’,mu);

%% start process

while(true)

oldmu=mu;
% current classification

for i=1:hl
c=abs(ind(i)-mu);
cc=find(c==min©);
hc(ind(i))=cc(1);
end

%recalculation of means

for i=1:k,
a=find(hc==i);
mu(i)=sum(a.*h(a))/sum(h(a));
end

if(mu==oldmu)
break;
end;

end

%% calculate mask
s=size(copy);
mask=zeros(s);

for i=1:s(1),
for j=1:s(2),
c=abs(copy(i,j)-mu);
a=find(c==min©);
mask(i,j)=a(1);
end
end

mu=mu+mi-1; % recover real range

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]刘启浪,汤勃,孔建益,王兴东.基于多尺度LBP特征的带钢表面缺陷图像SVM分类[J].组合机床与自动化加工技术. 2020,(12)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【疾病分类】基于matlab LBP果实病害检测分类【含Matlab源码 1714期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893097

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.