代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出)

本文主要是介绍代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • day50学习内容
  • 一、股票买卖的最佳时机III--至多2次买入和卖出
    • 1.1、动态规划五部曲
      • 1.1.1、 确定dp数组(dp table)以及下标的含义
      • 1.1.2、确定递推公式
      • 1.1.3、 dp数组如何初始化
      • 1.1.4、确定遍历顺序
    • 1.2、代码
      • 1.2.1、如何理解这段代码
  • 二、股票买卖的最佳时机IV--至多K次买入和卖出
    • 2.1、动态规划五部曲
      • 2.1.1、 确定dp数组(dp table)以及下标的含义
      • 2.1.2、确定递推公式
      • 2.1.3、 dp数组如何初始化
      • 2.1.4、确定遍历顺序
      • 2.1.5、输出结果
    • 2.2、代码
      • 2.2.1、代码抄的,太难了
  • 总结
    • 1.感想
    • 2.思维导图


day50学习内容

day50主要内容

  • 股票买卖的最佳时机III–至多2次买入和卖出
  • 股票买卖的最佳时机IV–至多K次买入和卖出

声明
本文思路和文字,引用自《代码随想录》


一、股票买卖的最佳时机III–至多2次买入和卖出

123.原题链接

1.1、动态规划五部曲

1.1.1、 确定dp数组(dp table)以及下标的含义

dp[i][j] 代表的是在第 i 天结束时,根据不同的交易状态(即 j),所能达到的最大利润。这个动态规划表通过不断更新这些状态,帮助我们找到在规定的交易次数内(本题为两次)能获得的最大利润。

1.1.2、确定递推公式

对于每一天 i 和每个状态 j,如下计算 dp[i][j]

  1. 没有操作 (j = 0): 这个状态实际上不参与计算,因为我们总是从第一次买入开始计算,但如果要表示它的话,可以认为它是 dp[i][0] = 0

  2. 第一次买入 (j = 1):

dp[i][1]=max(dp[i−1][1],−prices[i])

这意味着第一次买入的最大利润是上一天已经买入的最大利润和今天买入(当前价格的负值,因为我们支付了这么多钱)之间的较大者。

  1. 第一次卖出 (j = 2):
dp[i][2]=max(dp[i−1][2],dp[i−1][1]+prices[i])

第一次卖出的最大利润是上一天卖出的最大利润和今天卖出(即上一天买入的最大利润加上今天的价格)之间的较大者。

  1. 第二次买入 (j = 3):
dp[i][3]=max(dp[i−1][3],dp[i−1][2]−prices[i])

第二次买入的最大利润是上一天第二次买入的最大利润和上一天第一次卖出后再今天买入(上一天卖出的最大利润减去今天的价格)之间的较大者。

  1. 第二次卖出 (j = 4):
dp[i][4]=max(dp[i−1][4],dp[i−1][3]+prices[i])

第二次卖出的最大利润是上一天第二次卖出的最大利润和上一天第二次买入后今天卖出(上一天第二次买入的最大利润加上今天的价格)之间的较大者。

通过这些递推公式,我们能够从第一天遍历到最后一天,同时更新每天的五个状态,最终得到完成两次交易的最大利润,即 dp[n-1][4],其中 n 是给定价格数组的长度。

1.1.3、 dp数组如何初始化

在第一天,我们可以选择买入股票,所以 dp[0][1] 和 dp[0][3] 都被初始化为 -prices[0],
这表示第一天买入股票的成本。其他状态的利润在第一天都是0(因为我们还没有进行任何卖出操作)

1.1.4、确定遍历顺序

从小到大遍历

1.2、代码

class Solution {public int maxProfit(int[] prices) {int len = prices.length;if (prices.length == 0)return 0;/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[len - 1][4];}
}

1.2.1、如何理解这段代码

  1. 问题定义:给定一个数组 prices,其中 prices[i] 是第 i 天的股票价格。目标是找出最多进行两次交易(买入和卖出算一次交易)能获得的最大利润。注意,第二次买入必须在第一次卖出之后。

  2. 动态规划状态定义:定义一个二维数组 dp[len][5],其中 len 是给定价格数组的长度。dp[i][j] 表示第 i 天结束时处于五种状态之一的最大利润:

    • j = 0:没有进行任何操作。
    • j = 1:进行了第一次买入操作。
    • j = 2:进行了第一次卖出操作。
    • j = 3:进行了第二次买入操作。
    • j = 4:进行了第二次卖出操作。
  3. 初始化:在第一天,我们可以选择买入股票,所以 dp[0][1]dp[0][3] 都被初始化为 -prices[0],这表示第一天买入股票的成本。其他状态的利润在第一天都是0(因为我们还没有进行任何卖出操作),但代码中省略了这部分初始化,因为Java数组默认初始化为0。

  4. 状态转移方程:从第二天开始,我们根据前一天的状态更新当前天的状态:

    • dp[i][1]:第一次买入的最大利润,可能是前一天已经买入,或者今天才买入,取二者的较大值。
    • dp[i][2]:第一次卖出的最大利润,可能是前一天已经卖出,或者今天卖出(今天卖出的话,利润是前一天买入的利润加上今天的价格)。
    • dp[i][3]:第二次买入的最大利润,可能是前一天已经买入,或者今天买入(今天买入的话,利润是前一天第一次卖出的利润减去今天的价格)。
    • dp[i][4]:第二次卖出的最大利润,可能是前一天已经卖出,或者今天卖出(今天卖出的话,利润是前一天第二次买入的利润加上今天的价格)。
  5. 输出:最终的答案是 dp[len - 1][4],即最后一天结束时,完成两次买卖操作的最大利润。

通过动态规划表来追踪并更新每一天可能的最大利润,从而找到最多进行两次交易所能获得的最大利润。

二、股票买卖的最佳时机IV–至多K次买入和卖出

188.原题链接

2.1、动态规划五部曲

2.1.1、 确定dp数组(dp table)以及下标的含义

  • dp[len][k*2 + 1]:一个二维数组,len 是天数,k*2 + 1 是可能的交易状态数量。由于每次交易包括买入和卖出两个操作,因此共有 k*2 个操作状态,加上一个初始的没有操作状态,总共是 k*2 + 1 状态。
  • 对于 dp[i][j]
    • j 为0时,表示没有进行任何操作。
    • j 为奇数时,表示第 (j+1)/2 次交易持有股票(即买入状态)。
    • j 为偶数时,表示第 j/2 次交易不持有股票(即卖出状态)。

2.1.2、确定递推公式

对于第 i 天(i > 0),遍历所有交易状态 j,根据 j 的奇偶性,分别更新买入状态和卖出状态的最大利润:

  • 买入状态j 为奇数):dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i])
    • 如果在第 i 天买入股票,则最大利润是前一天同状态的利润和前一天卖出状态的利润减去今天的价格中的较大值。
  • 卖出状态j 为偶数):dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + prices[i])
    • 如果在第 i 天卖出股票,则最大利润是前一天同状态的利润和前一天买入状态的利润加上今天的价格中的较大值。

2.1.3、 dp数组如何初始化

对于第一天(i=0):

  • 没有进行任何交易的利润是0,即 dp[0][0] = 0
  • 对于所有的买入状态(j 为奇数),初始化为 -prices[0],因为如果在第一天买入股票,则损失了 prices[0] 的金额。

2.1.4、确定遍历顺序

从小到大遍历

2.1.5、输出结果

最终的结果是 dp[len - 1][k*2],即最后一天,进行完 k 次交易(全部卖出)后的最大利润。

通过这种方法,代码动态地计算在每一天结束时,根据不同交易次数和买卖状态下的最大利润,最终找到在给定交易次数限制下能够获得的最大利润。

2.2、代码

class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][股票状态]// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作int len = prices.length;int[][] dp = new int[len][k*2 + 1];for (int i = 1; i < k*2; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < k*2 - 1; j += 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[len - 1][k*2];}
}

2.2.1、代码抄的,太难了

总结

1.感想

  • 2题hard题,都不会写,但是一看题解,好像也不是完全写不来的感觉。。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

这篇关于代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892927

相关文章

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La