代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出)

本文主要是介绍代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • day50学习内容
  • 一、股票买卖的最佳时机III--至多2次买入和卖出
    • 1.1、动态规划五部曲
      • 1.1.1、 确定dp数组(dp table)以及下标的含义
      • 1.1.2、确定递推公式
      • 1.1.3、 dp数组如何初始化
      • 1.1.4、确定遍历顺序
    • 1.2、代码
      • 1.2.1、如何理解这段代码
  • 二、股票买卖的最佳时机IV--至多K次买入和卖出
    • 2.1、动态规划五部曲
      • 2.1.1、 确定dp数组(dp table)以及下标的含义
      • 2.1.2、确定递推公式
      • 2.1.3、 dp数组如何初始化
      • 2.1.4、确定遍历顺序
      • 2.1.5、输出结果
    • 2.2、代码
      • 2.2.1、代码抄的,太难了
  • 总结
    • 1.感想
    • 2.思维导图


day50学习内容

day50主要内容

  • 股票买卖的最佳时机III–至多2次买入和卖出
  • 股票买卖的最佳时机IV–至多K次买入和卖出

声明
本文思路和文字,引用自《代码随想录》


一、股票买卖的最佳时机III–至多2次买入和卖出

123.原题链接

1.1、动态规划五部曲

1.1.1、 确定dp数组(dp table)以及下标的含义

dp[i][j] 代表的是在第 i 天结束时,根据不同的交易状态(即 j),所能达到的最大利润。这个动态规划表通过不断更新这些状态,帮助我们找到在规定的交易次数内(本题为两次)能获得的最大利润。

1.1.2、确定递推公式

对于每一天 i 和每个状态 j,如下计算 dp[i][j]

  1. 没有操作 (j = 0): 这个状态实际上不参与计算,因为我们总是从第一次买入开始计算,但如果要表示它的话,可以认为它是 dp[i][0] = 0

  2. 第一次买入 (j = 1):

dp[i][1]=max(dp[i−1][1],−prices[i])

这意味着第一次买入的最大利润是上一天已经买入的最大利润和今天买入(当前价格的负值,因为我们支付了这么多钱)之间的较大者。

  1. 第一次卖出 (j = 2):
dp[i][2]=max(dp[i−1][2],dp[i−1][1]+prices[i])

第一次卖出的最大利润是上一天卖出的最大利润和今天卖出(即上一天买入的最大利润加上今天的价格)之间的较大者。

  1. 第二次买入 (j = 3):
dp[i][3]=max(dp[i−1][3],dp[i−1][2]−prices[i])

第二次买入的最大利润是上一天第二次买入的最大利润和上一天第一次卖出后再今天买入(上一天卖出的最大利润减去今天的价格)之间的较大者。

  1. 第二次卖出 (j = 4):
dp[i][4]=max(dp[i−1][4],dp[i−1][3]+prices[i])

第二次卖出的最大利润是上一天第二次卖出的最大利润和上一天第二次买入后今天卖出(上一天第二次买入的最大利润加上今天的价格)之间的较大者。

通过这些递推公式,我们能够从第一天遍历到最后一天,同时更新每天的五个状态,最终得到完成两次交易的最大利润,即 dp[n-1][4],其中 n 是给定价格数组的长度。

1.1.3、 dp数组如何初始化

在第一天,我们可以选择买入股票,所以 dp[0][1] 和 dp[0][3] 都被初始化为 -prices[0],
这表示第一天买入股票的成本。其他状态的利润在第一天都是0(因为我们还没有进行任何卖出操作)

1.1.4、确定遍历顺序

从小到大遍历

1.2、代码

class Solution {public int maxProfit(int[] prices) {int len = prices.length;if (prices.length == 0)return 0;/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[len - 1][4];}
}

1.2.1、如何理解这段代码

  1. 问题定义:给定一个数组 prices,其中 prices[i] 是第 i 天的股票价格。目标是找出最多进行两次交易(买入和卖出算一次交易)能获得的最大利润。注意,第二次买入必须在第一次卖出之后。

  2. 动态规划状态定义:定义一个二维数组 dp[len][5],其中 len 是给定价格数组的长度。dp[i][j] 表示第 i 天结束时处于五种状态之一的最大利润:

    • j = 0:没有进行任何操作。
    • j = 1:进行了第一次买入操作。
    • j = 2:进行了第一次卖出操作。
    • j = 3:进行了第二次买入操作。
    • j = 4:进行了第二次卖出操作。
  3. 初始化:在第一天,我们可以选择买入股票,所以 dp[0][1]dp[0][3] 都被初始化为 -prices[0],这表示第一天买入股票的成本。其他状态的利润在第一天都是0(因为我们还没有进行任何卖出操作),但代码中省略了这部分初始化,因为Java数组默认初始化为0。

  4. 状态转移方程:从第二天开始,我们根据前一天的状态更新当前天的状态:

    • dp[i][1]:第一次买入的最大利润,可能是前一天已经买入,或者今天才买入,取二者的较大值。
    • dp[i][2]:第一次卖出的最大利润,可能是前一天已经卖出,或者今天卖出(今天卖出的话,利润是前一天买入的利润加上今天的价格)。
    • dp[i][3]:第二次买入的最大利润,可能是前一天已经买入,或者今天买入(今天买入的话,利润是前一天第一次卖出的利润减去今天的价格)。
    • dp[i][4]:第二次卖出的最大利润,可能是前一天已经卖出,或者今天卖出(今天卖出的话,利润是前一天第二次买入的利润加上今天的价格)。
  5. 输出:最终的答案是 dp[len - 1][4],即最后一天结束时,完成两次买卖操作的最大利润。

通过动态规划表来追踪并更新每一天可能的最大利润,从而找到最多进行两次交易所能获得的最大利润。

二、股票买卖的最佳时机IV–至多K次买入和卖出

188.原题链接

2.1、动态规划五部曲

2.1.1、 确定dp数组(dp table)以及下标的含义

  • dp[len][k*2 + 1]:一个二维数组,len 是天数,k*2 + 1 是可能的交易状态数量。由于每次交易包括买入和卖出两个操作,因此共有 k*2 个操作状态,加上一个初始的没有操作状态,总共是 k*2 + 1 状态。
  • 对于 dp[i][j]
    • j 为0时,表示没有进行任何操作。
    • j 为奇数时,表示第 (j+1)/2 次交易持有股票(即买入状态)。
    • j 为偶数时,表示第 j/2 次交易不持有股票(即卖出状态)。

2.1.2、确定递推公式

对于第 i 天(i > 0),遍历所有交易状态 j,根据 j 的奇偶性,分别更新买入状态和卖出状态的最大利润:

  • 买入状态j 为奇数):dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i])
    • 如果在第 i 天买入股票,则最大利润是前一天同状态的利润和前一天卖出状态的利润减去今天的价格中的较大值。
  • 卖出状态j 为偶数):dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + prices[i])
    • 如果在第 i 天卖出股票,则最大利润是前一天同状态的利润和前一天买入状态的利润加上今天的价格中的较大值。

2.1.3、 dp数组如何初始化

对于第一天(i=0):

  • 没有进行任何交易的利润是0,即 dp[0][0] = 0
  • 对于所有的买入状态(j 为奇数),初始化为 -prices[0],因为如果在第一天买入股票,则损失了 prices[0] 的金额。

2.1.4、确定遍历顺序

从小到大遍历

2.1.5、输出结果

最终的结果是 dp[len - 1][k*2],即最后一天,进行完 k 次交易(全部卖出)后的最大利润。

通过这种方法,代码动态地计算在每一天结束时,根据不同交易次数和买卖状态下的最大利润,最终找到在给定交易次数限制下能够获得的最大利润。

2.2、代码

class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][股票状态]// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作int len = prices.length;int[][] dp = new int[len][k*2 + 1];for (int i = 1; i < k*2; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < k*2 - 1; j += 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[len - 1][k*2];}
}

2.2.1、代码抄的,太难了

总结

1.感想

  • 2题hard题,都不会写,但是一看题解,好像也不是完全写不来的感觉。。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

这篇关于代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892927

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时