代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出)

本文主要是介绍代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • day50学习内容
  • 一、股票买卖的最佳时机III--至多2次买入和卖出
    • 1.1、动态规划五部曲
      • 1.1.1、 确定dp数组(dp table)以及下标的含义
      • 1.1.2、确定递推公式
      • 1.1.3、 dp数组如何初始化
      • 1.1.4、确定遍历顺序
    • 1.2、代码
      • 1.2.1、如何理解这段代码
  • 二、股票买卖的最佳时机IV--至多K次买入和卖出
    • 2.1、动态规划五部曲
      • 2.1.1、 确定dp数组(dp table)以及下标的含义
      • 2.1.2、确定递推公式
      • 2.1.3、 dp数组如何初始化
      • 2.1.4、确定遍历顺序
      • 2.1.5、输出结果
    • 2.2、代码
      • 2.2.1、代码抄的,太难了
  • 总结
    • 1.感想
    • 2.思维导图


day50学习内容

day50主要内容

  • 股票买卖的最佳时机III–至多2次买入和卖出
  • 股票买卖的最佳时机IV–至多K次买入和卖出

声明
本文思路和文字,引用自《代码随想录》


一、股票买卖的最佳时机III–至多2次买入和卖出

123.原题链接

1.1、动态规划五部曲

1.1.1、 确定dp数组(dp table)以及下标的含义

dp[i][j] 代表的是在第 i 天结束时,根据不同的交易状态(即 j),所能达到的最大利润。这个动态规划表通过不断更新这些状态,帮助我们找到在规定的交易次数内(本题为两次)能获得的最大利润。

1.1.2、确定递推公式

对于每一天 i 和每个状态 j,如下计算 dp[i][j]

  1. 没有操作 (j = 0): 这个状态实际上不参与计算,因为我们总是从第一次买入开始计算,但如果要表示它的话,可以认为它是 dp[i][0] = 0

  2. 第一次买入 (j = 1):

dp[i][1]=max(dp[i−1][1],−prices[i])

这意味着第一次买入的最大利润是上一天已经买入的最大利润和今天买入(当前价格的负值,因为我们支付了这么多钱)之间的较大者。

  1. 第一次卖出 (j = 2):
dp[i][2]=max(dp[i−1][2],dp[i−1][1]+prices[i])

第一次卖出的最大利润是上一天卖出的最大利润和今天卖出(即上一天买入的最大利润加上今天的价格)之间的较大者。

  1. 第二次买入 (j = 3):
dp[i][3]=max(dp[i−1][3],dp[i−1][2]−prices[i])

第二次买入的最大利润是上一天第二次买入的最大利润和上一天第一次卖出后再今天买入(上一天卖出的最大利润减去今天的价格)之间的较大者。

  1. 第二次卖出 (j = 4):
dp[i][4]=max(dp[i−1][4],dp[i−1][3]+prices[i])

第二次卖出的最大利润是上一天第二次卖出的最大利润和上一天第二次买入后今天卖出(上一天第二次买入的最大利润加上今天的价格)之间的较大者。

通过这些递推公式,我们能够从第一天遍历到最后一天,同时更新每天的五个状态,最终得到完成两次交易的最大利润,即 dp[n-1][4],其中 n 是给定价格数组的长度。

1.1.3、 dp数组如何初始化

在第一天,我们可以选择买入股票,所以 dp[0][1] 和 dp[0][3] 都被初始化为 -prices[0],
这表示第一天买入股票的成本。其他状态的利润在第一天都是0(因为我们还没有进行任何卖出操作)

1.1.4、确定遍历顺序

从小到大遍历

1.2、代码

class Solution {public int maxProfit(int[] prices) {int len = prices.length;if (prices.length == 0)return 0;/** 定义 5 种状态:* 0: 没有操作, 1: 第一次买入, 2: 第一次卖出, 3: 第二次买入, 4: 第二次卖出*/int[][] dp = new int[len][5];dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < len; i++) {dp[i][1] = Math.max(dp[i - 1][1], -prices[i]);dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[len - 1][4];}
}

1.2.1、如何理解这段代码

  1. 问题定义:给定一个数组 prices,其中 prices[i] 是第 i 天的股票价格。目标是找出最多进行两次交易(买入和卖出算一次交易)能获得的最大利润。注意,第二次买入必须在第一次卖出之后。

  2. 动态规划状态定义:定义一个二维数组 dp[len][5],其中 len 是给定价格数组的长度。dp[i][j] 表示第 i 天结束时处于五种状态之一的最大利润:

    • j = 0:没有进行任何操作。
    • j = 1:进行了第一次买入操作。
    • j = 2:进行了第一次卖出操作。
    • j = 3:进行了第二次买入操作。
    • j = 4:进行了第二次卖出操作。
  3. 初始化:在第一天,我们可以选择买入股票,所以 dp[0][1]dp[0][3] 都被初始化为 -prices[0],这表示第一天买入股票的成本。其他状态的利润在第一天都是0(因为我们还没有进行任何卖出操作),但代码中省略了这部分初始化,因为Java数组默认初始化为0。

  4. 状态转移方程:从第二天开始,我们根据前一天的状态更新当前天的状态:

    • dp[i][1]:第一次买入的最大利润,可能是前一天已经买入,或者今天才买入,取二者的较大值。
    • dp[i][2]:第一次卖出的最大利润,可能是前一天已经卖出,或者今天卖出(今天卖出的话,利润是前一天买入的利润加上今天的价格)。
    • dp[i][3]:第二次买入的最大利润,可能是前一天已经买入,或者今天买入(今天买入的话,利润是前一天第一次卖出的利润减去今天的价格)。
    • dp[i][4]:第二次卖出的最大利润,可能是前一天已经卖出,或者今天卖出(今天卖出的话,利润是前一天第二次买入的利润加上今天的价格)。
  5. 输出:最终的答案是 dp[len - 1][4],即最后一天结束时,完成两次买卖操作的最大利润。

通过动态规划表来追踪并更新每一天可能的最大利润,从而找到最多进行两次交易所能获得的最大利润。

二、股票买卖的最佳时机IV–至多K次买入和卖出

188.原题链接

2.1、动态规划五部曲

2.1.1、 确定dp数组(dp table)以及下标的含义

  • dp[len][k*2 + 1]:一个二维数组,len 是天数,k*2 + 1 是可能的交易状态数量。由于每次交易包括买入和卖出两个操作,因此共有 k*2 个操作状态,加上一个初始的没有操作状态,总共是 k*2 + 1 状态。
  • 对于 dp[i][j]
    • j 为0时,表示没有进行任何操作。
    • j 为奇数时,表示第 (j+1)/2 次交易持有股票(即买入状态)。
    • j 为偶数时,表示第 j/2 次交易不持有股票(即卖出状态)。

2.1.2、确定递推公式

对于第 i 天(i > 0),遍历所有交易状态 j,根据 j 的奇偶性,分别更新买入状态和卖出状态的最大利润:

  • 买入状态j 为奇数):dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i])
    • 如果在第 i 天买入股票,则最大利润是前一天同状态的利润和前一天卖出状态的利润减去今天的价格中的较大值。
  • 卖出状态j 为偶数):dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + prices[i])
    • 如果在第 i 天卖出股票,则最大利润是前一天同状态的利润和前一天买入状态的利润加上今天的价格中的较大值。

2.1.3、 dp数组如何初始化

对于第一天(i=0):

  • 没有进行任何交易的利润是0,即 dp[0][0] = 0
  • 对于所有的买入状态(j 为奇数),初始化为 -prices[0],因为如果在第一天买入股票,则损失了 prices[0] 的金额。

2.1.4、确定遍历顺序

从小到大遍历

2.1.5、输出结果

最终的结果是 dp[len - 1][k*2],即最后一天,进行完 k 次交易(全部卖出)后的最大利润。

通过这种方法,代码动态地计算在每一天结束时,根据不同交易次数和买卖状态下的最大利润,最终找到在给定交易次数限制下能够获得的最大利润。

2.2、代码

class Solution {public int maxProfit(int k, int[] prices) {if (prices.length == 0) return 0;// [天数][股票状态]// 股票状态: 奇数表示第 k 次交易持有/买入, 偶数表示第 k 次交易不持有/卖出, 0 表示没有操作int len = prices.length;int[][] dp = new int[len][k*2 + 1];for (int i = 1; i < k*2; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < len; i++) {for (int j = 0; j < k*2 - 1; j += 2) {dp[i][j + 1] = Math.max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = Math.max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[len - 1][k*2];}
}

2.2.1、代码抄的,太难了

总结

1.感想

  • 2题hard题,都不会写,但是一看题解,好像也不是完全写不来的感觉。。

2.思维导图

本文思路引用自代码随想录,感谢代码随想录作者。

这篇关于代码随想录刷题day50|股票买卖的最佳时机III(至多2次买入和卖出)股票买卖的最佳时机IV(至多K次买入和卖出)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/892927

相关文章

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1

html css jquery选项卡 代码练习小项目

在学习 html 和 css jquery 结合使用的时候 做好是能尝试做一些简单的小功能,来提高自己的 逻辑能力,熟悉代码的编写语法 下面分享一段代码 使用html css jquery选项卡 代码练习 <div class="box"><dl class="tab"><dd class="active">手机</dd><dd>家电</dd><dd>服装</dd><dd>数码</dd><dd

生信代码入门:从零开始掌握生物信息学编程技能

少走弯路,高效分析;了解生信云,访问 【生信圆桌x生信专用云服务器】 : www.tebteb.cc 介绍 生物信息学是一个高度跨学科的领域,结合了生物学、计算机科学和统计学。随着高通量测序技术的发展,海量的生物数据需要通过编程来进行处理和分析。因此,掌握生信编程技能,成为每一个生物信息学研究者的必备能力。 生信代码入门,旨在帮助初学者从零开始学习生物信息学中的编程基础。通过学习常用

husky 工具配置代码检查工作流:提交代码至仓库前做代码检查

提示:这篇博客以我前两篇博客作为先修知识,请大家先去看看我前两篇博客 博客指路:前端 ESlint 代码规范及修复代码规范错误-CSDN博客前端 Vue3 项目开发—— ESLint & prettier 配置代码风格-CSDN博客 husky 工具配置代码检查工作流的作用 在工作中,我们经常需要将写好的代码提交至代码仓库 但是由于程序员疏忽而将不规范的代码提交至仓库,显然是不合理的 所

Unity3D自带Mouse Look鼠标视角代码解析。

Unity3D自带Mouse Look鼠标视角代码解析。 代码块 代码块语法遵循标准markdown代码,例如: using UnityEngine;using System.Collections;/// MouseLook rotates the transform based on the mouse delta./// Minimum and Maximum values can