matlab使用教程(39)—基本频谱分析

2024-04-10 14:04

本文主要是介绍matlab使用教程(39)—基本频谱分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        傅里叶变换是用于对时域信号执行频率和功率谱分析的工具。

1.频谱分析数量

        频谱分析研究非均匀采样的离散数据中包含的频谱。傅里叶变换是通过在频率空间表示基于时间或空间的信号来揭示该信号的频率分量的工具。下表列出了用于描述和解释信号属性的常用量。

2含噪信号分析

        傅里叶变换可以计算被随机噪声破坏的信号的频率分量。创建具有 15 Hz 和 40 Hz 分量频率的信号,并插入随机高斯噪声。
rng('default')
fs = 100; % sample frequency (Hz)
t = 0:1/fs:10-1/fs; % 10 second span time vector
x = (1.3)*sin(2*pi*15*t) ... % 15 Hz component+ (1.7)*sin(2*pi*40*(t-2)) ... % 40 Hz component+ 2.5*randn(size(t)); % Gaussian noise;
        信号的傅里叶变换可确定其频率分量。在 MATLAB® 中,fft 函数使用快速傅里叶变换算法计算傅里叶变换。使用 fft 计算信号的离散傅里叶变换。
y = fft(x);
        将功率谱绘制为频率的函数。尽管噪声在基于时间的空间内伪装成信号的频率分量,但傅里叶变换将其显现为功率尖峰。
n = length(x); % number of samples
f = (0:n-1)*(fs/n); % frequency range
power = abs(y).^2/n; % power of the DFT
plot(f,power)
xlabel('Frequency')
ylabel('Power')

        在许多应用中,查看以 0 频率为中心的功率谱更加方便,因为它能更好地显示信号的周期性。使用fftshift 函数对 y 执行循环平移,并绘制以 0 为中心的功率。
y0 = fftshift(y); % shift y values
f0 = (-n/2:n/2-1)*(fs/n); % 0-centered frequency range
power0 = abs(y0).^2/n; % 0-centered power
plot(f0,power0)
xlabel('Frequency')
ylabel('Power')

3音频信号分析

        您可以使用傅里叶变换来分析音频数据的频谱。
        文件 bluewhale.au 包含水下麦克风记录的加利福尼亚海岸的太平洋蓝鲸发声的音频数据。此文件来自于康奈尔大学生物声学研究项目保存的动物发声库。
        由于蓝鲸的叫声频率如此之低,以至人类几乎听不到。数据中的时间标度压缩了 10 倍,以便提高音调并使叫声更清晰可闻。读取并绘制音频数据。可使用命令 sound(x,fs) 来收听音频。
whaleFile = 'bluewhale.au';
[x,fs] = audioread(whaleFile);
plot(x)
xlabel('Sample Number')
ylabel('Amplitude')

        第一个声音为“颤音”,之后是三个“呻吟音”。本示例将分析单个呻吟音。指定大致包含第一个呻吟音的新数据,并校正时间数据以体现 10 部的加速。将截断的信号绘制为时间的函数。
moan = x(2.45e4:3.10e4);
t = 10*(0:1/fs:(length(moan)-1)/fs);
plot(t,moan)
xlabel('Time (seconds)')
ylabel('Amplitude')
xlim([0 t(end)])

        数据的傅里叶变换确定了音频信号的频率分量。在一些使用 fft 处理大量数据的应用中,通常需要调整输入,使样本数量为 2 的幂。这样可以大幅提高变换计算的速度,对于具有较大质因数的样本大小更是如此。指定新的信号长度 n (2 的幂),并使用 fft 函数计算信号的离散傅里叶变换。 fft 会自动使用零来填充原始数据,以增加样本大小。
m = length(moan); % original sample length
n = pow2(nextpow2(m)); % transform length
y = fft(moan,n); % DFT of signal
        根据加速因子调整频率范围,并计算和绘制信号的功率谱。绘图指示,呻吟音包含约 17 Hz 的基本频率和一系列谐波(其中强调了第二个谐波)。
f = (0:n-1)*(fs/n)/10;
power = abs(y).^2/n; 
plot(f(1:floor(n/2)),power(1:floor(n/2)))
xlabel('Frequency')
ylabel('Power')

这篇关于matlab使用教程(39)—基本频谱分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891262

相关文章

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa