matlab使用教程(39)—基本频谱分析

2024-04-10 14:04

本文主要是介绍matlab使用教程(39)—基本频谱分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        傅里叶变换是用于对时域信号执行频率和功率谱分析的工具。

1.频谱分析数量

        频谱分析研究非均匀采样的离散数据中包含的频谱。傅里叶变换是通过在频率空间表示基于时间或空间的信号来揭示该信号的频率分量的工具。下表列出了用于描述和解释信号属性的常用量。

2含噪信号分析

        傅里叶变换可以计算被随机噪声破坏的信号的频率分量。创建具有 15 Hz 和 40 Hz 分量频率的信号,并插入随机高斯噪声。
rng('default')
fs = 100; % sample frequency (Hz)
t = 0:1/fs:10-1/fs; % 10 second span time vector
x = (1.3)*sin(2*pi*15*t) ... % 15 Hz component+ (1.7)*sin(2*pi*40*(t-2)) ... % 40 Hz component+ 2.5*randn(size(t)); % Gaussian noise;
        信号的傅里叶变换可确定其频率分量。在 MATLAB® 中,fft 函数使用快速傅里叶变换算法计算傅里叶变换。使用 fft 计算信号的离散傅里叶变换。
y = fft(x);
        将功率谱绘制为频率的函数。尽管噪声在基于时间的空间内伪装成信号的频率分量,但傅里叶变换将其显现为功率尖峰。
n = length(x); % number of samples
f = (0:n-1)*(fs/n); % frequency range
power = abs(y).^2/n; % power of the DFT
plot(f,power)
xlabel('Frequency')
ylabel('Power')

        在许多应用中,查看以 0 频率为中心的功率谱更加方便,因为它能更好地显示信号的周期性。使用fftshift 函数对 y 执行循环平移,并绘制以 0 为中心的功率。
y0 = fftshift(y); % shift y values
f0 = (-n/2:n/2-1)*(fs/n); % 0-centered frequency range
power0 = abs(y0).^2/n; % 0-centered power
plot(f0,power0)
xlabel('Frequency')
ylabel('Power')

3音频信号分析

        您可以使用傅里叶变换来分析音频数据的频谱。
        文件 bluewhale.au 包含水下麦克风记录的加利福尼亚海岸的太平洋蓝鲸发声的音频数据。此文件来自于康奈尔大学生物声学研究项目保存的动物发声库。
        由于蓝鲸的叫声频率如此之低,以至人类几乎听不到。数据中的时间标度压缩了 10 倍,以便提高音调并使叫声更清晰可闻。读取并绘制音频数据。可使用命令 sound(x,fs) 来收听音频。
whaleFile = 'bluewhale.au';
[x,fs] = audioread(whaleFile);
plot(x)
xlabel('Sample Number')
ylabel('Amplitude')

        第一个声音为“颤音”,之后是三个“呻吟音”。本示例将分析单个呻吟音。指定大致包含第一个呻吟音的新数据,并校正时间数据以体现 10 部的加速。将截断的信号绘制为时间的函数。
moan = x(2.45e4:3.10e4);
t = 10*(0:1/fs:(length(moan)-1)/fs);
plot(t,moan)
xlabel('Time (seconds)')
ylabel('Amplitude')
xlim([0 t(end)])

        数据的傅里叶变换确定了音频信号的频率分量。在一些使用 fft 处理大量数据的应用中,通常需要调整输入,使样本数量为 2 的幂。这样可以大幅提高变换计算的速度,对于具有较大质因数的样本大小更是如此。指定新的信号长度 n (2 的幂),并使用 fft 函数计算信号的离散傅里叶变换。 fft 会自动使用零来填充原始数据,以增加样本大小。
m = length(moan); % original sample length
n = pow2(nextpow2(m)); % transform length
y = fft(moan,n); % DFT of signal
        根据加速因子调整频率范围,并计算和绘制信号的功率谱。绘图指示,呻吟音包含约 17 Hz 的基本频率和一系列谐波(其中强调了第二个谐波)。
f = (0:n-1)*(fs/n)/10;
power = abs(y).^2/n; 
plot(f(1:floor(n/2)),power(1:floor(n/2)))
xlabel('Frequency')
ylabel('Power')

这篇关于matlab使用教程(39)—基本频谱分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891262

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录