theano中对图像进行convolution 运算

2024-04-10 08:18

本文主要是介绍theano中对图像进行convolution 运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(1) 定义计算过程中需要的symbolic expression

 1 """
 2 定义相关的symbolic experssion
 3 """
 4 # convolution layer的输入,根据theano,它应该是一个4d tensor
 5 input = T.tensor4(name='input')
 6 # 共享权值W,它的shape为2,3,9,9
 7 w_shp = (2,3,9,9);w_bound = numpy.sqrt(3*9*9)
 8 W = theano.shared(numpy.asarray(rng.uniform(low= -1.0/w_bound, high = 1.0/w_bound,size=w_shp),dtype=input.dtype),name='W')
 9 # 利用卷积核W对input进行卷积运算
10 conv_out = conv.conv2d(input,W)
11 # 偏执向量b
12 b_shp = (2,)  # b是一个只有1个元素2的tuple
13 b = theano.shared(numpy.asarray(rng.uniform(low= -.5, high = .5,size=b_shp),dtype=input.dtype),name='b')
14 # 计算sigmoid函数
15 output = T.nnet.sigmoid(conv_out+b.dimshuffle('x',0,'x','x'))
16 # 输入输出function
17 f = theano.function([input],output)

 

 

(2)利用真实数据计算

 1 """
 2 开始使用具体数值
 3 """
 4 # 读入图像
 5 img = Image.open('3wolfmoon.jpg', mode='r')
 6 # 将输入图像存入在array中
 7 img = numpy.array(img,dtype='float64')/256
 8 # 对输入图像进行reshape
 9 img_=img.transpose(2,0,1).reshape(1,3,639,516)
10 # 利用convolution kernel对输入图像进行卷积运算
11 filtered_img=f(img_)

(3)绘制需要显示的图像

 1 """
 2 绘制图像
 3 """
 4 # 显示原始图像
 5 pylab.subplot(1,3,1);pylab.axis('off');pylab.imshow(img);pylab.gray()
 6 # 显示filter后的图像的channel1
 7 pylab.subplot(1,3,2);pylab.axis('off');pylab.imshow(filtered_img[0,0,:,:])
 8 # 显示filter后的图像的channel2
 9 pylab.subplot(1,3,3);pylab.axis('off');pylab.imshow(filtered_img[0,1,:,:])
10 # 显示
11 pylab.show()

 

整个代码段

 1 # -*- coding: utf-8 -*-
 2 
 3 # 导入相关的模块
 4 import theano
 5 from theano import tensor as T
 6 from theano.tensor.nnet import conv
 7 import numpy
 8 import pylab
 9 from PIL import Image
10 
11 
12 # 产生随机数的种子
13 rng = numpy.random.RandomState(23455)
14 
15 """
16 定义相关的symbolic experssion
17 """
18 # convolution layer的输入,根据theano,它应该是一个4d tensor
19 input = T.tensor4(name='input')
20 # 共享权值W,它的shape为2,3,9,9
21 w_shp = (2,3,9,9);w_bound = numpy.sqrt(3*9*9)
22 W = theano.shared(numpy.asarray(rng.uniform(low= -1.0/w_bound, high = 1.0/w_bound,size=w_shp),dtype=input.dtype),name='W')
23 # 利用卷积核W对input进行卷积运算
24 conv_out = conv.conv2d(input,W)
25 # 偏执向量b
26 b_shp = (2,)  # b是一个只有1个元素2的tuple
27 b = theano.shared(numpy.asarray(rng.uniform(low= -.5, high = .5,size=b_shp),dtype=input.dtype),name='b')
28 # 计算sigmoid函数
29 output = T.nnet.sigmoid(conv_out+b.dimshuffle('x',0,'x','x'))
30 # 输入输出function
31 f = theano.function([input],output)
32 
33 """
34 开始使用具体数值
35 """
36 # 读入图像
37 img = Image.open('3wolfmoon.jpg', mode='r')
38 # 将输入图像存入在array中
39 img = numpy.array(img,dtype='float64')/256
40 # 对输入图像进行reshape
41 img_=img.transpose(2,0,1).reshape(1,3,639,516)
42 # 利用convolution kernel对输入图像进行卷积运算
43 filtered_img=f(img_)
44 
45 """
46 绘制图像
47 """
48 # 显示原始图像
49 pylab.subplot(1,3,1);pylab.axis('off');pylab.imshow(img);pylab.gray()
50 # 显示filter后的图像的channel1
51 pylab.subplot(1,3,2);pylab.axis('off');pylab.imshow(filtered_img[0,0,:,:])
52 # 显示filter后的图像的channel2
53 pylab.subplot(1,3,3);pylab.axis('off');pylab.imshow(filtered_img[0,1,:,:])
54 # 显示
55 pylab.show()
View Code

 

这篇关于theano中对图像进行convolution 运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/890528

相关文章

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结