网格矢量如何计算莫兰指数

2024-04-10 02:12

本文主要是介绍网格矢量如何计算莫兰指数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网格矢量如何计算莫兰指数

引言

遇到一个问题,计算矢量网格的莫兰指数。

概念解释

莫兰指数

莫兰指数(Moran’s Index)是一种空间自相关指标,用于衡量空间数据的相似性和聚集程度。它可以用来描述一个区域与其邻近区域之间的属性值的相关性。莫兰指数的取值范围通常在-1到1之间。

  • 当莫兰指数接近1时,表示空间数据呈现出正相关,即相似的值倾向于聚集在一起。
  • 当莫兰指数接近-1时,表示空间数据呈现出负相关,即不同的值倾向于聚集在一起。
  • 当莫兰指数接近0时,表示空间数据呈现出随机分布,没有明显的空间自相关性。

knearst=4?

knearst=4矩阵是一种空间权重矩阵,用于定义空间数据中每个观测点的邻域。在这种矩阵中,每个观测点的邻域由其最近的4个点组成。

示意图,这个用距离小时

解决思路

计算矢量数据中每个要素(网格)的局部莫兰指数,并将计算结果添加到矢量数据的属性表中。我做了一个示意矢量,如图所示:

因为需要涉及到矢量数据的操作,这里我们使用gdal

还涉及到莫兰指数,我们使用pysal,这个包用于空间权重矩阵的构建、空间自相关指标的计算、空间回归模型的估计等。

初始化和读取矢量数据

import numpy as np
import pysal
from osgeo import ogrdriver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据.shp"
dataset = driver.Open(SHP_PATH, 1) 
layer = dataset.GetLayer()
  1. 使用 ogr 库打开矢量数据文件(ESRI Shapefile),以读写模式打开。
  2. 获取矢量数据的图层。

提取属性值和坐标

values = []
coords = []
for feature in layer:geom = feature.GetGeometryRef()centroid = geom.Centroid()coords.append([centroid.GetX(), centroid.GetY()])values.append(feature.GetField('singlearea'))values = np.array(values)
coords = np.array(coords)
  1. 遍历图层中的每个要素(feature)。
  2. 获取要素的几何体(geometry),并计算其质心坐标。
  3. 将质心坐标添加到 coords 列表中。
  4. 将指定字段(‘singlearea’)的属性值添加到 values 列表中。
  5. 将属性值和坐标转换为 NumPy 数组。

创建权重矩阵

knn = pysal.lib.weights.KNN(coords, k=4)
knn.transform = 'r'
  1. 使用 pysal 库的 KNN 函数创建 k 最近邻权重矩阵,设置 k=4
  2. 对权重矩阵进行行标准化。

计算局部莫兰指数

local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)
  1. 使用 pysal 库的 Moran_Local 函数计算每个网格的局部莫兰指数。
  2. 打印计算得到的局部莫兰指数。

将局部莫兰指数添加到矢量数据属性表

lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()for i in range(layer.GetFeatureCount()):feature = layer.GetFeature(i)feature.SetField('LISA_I', float(local_moran.Is[i]))layer.SetFeature(feature)
  1. 创建一个新的字段(‘LISA_I’)来存储局部莫兰指数。
  2. 重新打开矢量数据集并获取图层。
  3. 遍历图层中的每个要素。
  4. 使用 layer.GetFeature(i) 获取要素,并将对应的局部莫兰指数赋值给新字段。
  5. 更新要素的属性表。

关闭数据集并销毁数据源

dataset.Destroy()
dataset = None
print("局部莫兰指数已成功添加到矢量数据属性表中。")
  1. 关闭矢量数据集。
  2. 销毁数据源以释放资源。
  3. 打印提示信息,表示局部莫兰指数已成功添加到矢量数据的属性表中。

完整代码

import numpy as np
import pysal
from osgeo import ogr# 打开矢量数据文件(以读写模式打开)
driver = ogr.GetDriverByName('ESRI Shapefile')
SHP_PATH = r"矢量数据 - 副本.shp"
dataset = driver.Open(SHP_PATH, 1)  
layer = dataset.GetLayer()# 提取属性值和坐标
values = []
coords = []
for feature in layer:geom = feature.GetGeometryRef()centroid = geom.Centroid()coords.append([centroid.GetX(), centroid.GetY()])values.append(feature.GetField('cenlan'))# 将属性值和坐标转换为NumPy数组
values = np.array(values)
coords = np.array(coords)# 创建k最近邻权重矩阵(knearst=4)
knn = pysal.lib.weights.KNN(coords, k=4)# 行标准化权重矩阵
knn.transform = 'r'# 计算每个网格的局部莫兰指数
local_moran = pysal.explore.esda.Moran_Local(values, knn)
print("局部莫兰指数:", local_moran.Is)# 标准化局部莫兰指数
min_value = np.min(local_moran.Is)
max_value = np.max(local_moran.Is)
normalized_local_moran = (local_moran.Is - min_value) / (max_value - min_value) * 2 - 1
print("标准化后的局部莫兰指数:", normalized_local_moran)# 将标准化后的局部莫兰指数添加到矢量数据属性表,使用有效的字段名称
lisa_field = ogr.FieldDefn('LISA_I', ogr.OFTReal)
layer.CreateField(lisa_field)# 重新打开数据集并获取图层
dataset = None
dataset = driver.Open(SHP_PATH, 1)
layer = dataset.GetLayer()# 使用 layer.GetFeature(i) 获取要素并更新,使用更新后的字段名称
for i in range(layer.GetFeatureCount()):feature = layer.GetFeature(i)feature.SetField('LISA_I', float(normalized_local_moran[i]))layer.SetFeature(feature)# 关闭数据集并销毁数据源
dataset.Destroy()
dataset = Noneprint("标准化后的局部莫兰指数已成功添加到矢量数据属性表中。")

效果展示

运行完代码,效果为:

总结

使用gdal负责空间数据处理,使用pysal完成莫兰指数的计算,然后把计算结果写入到属性表里,

这篇关于网格矢量如何计算莫兰指数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889823

相关文章

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

计算数组的斜率,偏移,R2

模拟Excel中的R2的计算。         public bool fnCheckRear_R2(List<double[]> lRear, int iMinRear, int iMaxRear, ref double dR2)         {             bool bResult = true;             int n = 0;             dou

GPU 计算 CMPS224 2021 学习笔记 02

并行类型 (1)任务并行 (2)数据并行 CPU & GPU CPU和GPU拥有相互独立的内存空间,需要在两者之间相互传输数据。 (1)分配GPU内存 (2)将CPU上的数据复制到GPU上 (3)在GPU上对数据进行计算操作 (4)将计算结果从GPU复制到CPU上 (5)释放GPU内存 CUDA内存管理API (1)分配内存 cudaErro

Java - BigDecimal 计算分位(百分位)

日常开发中,如果使用数据库来直接查询一组数据的分位数,就比较简单,直接使用对应的函数就可以了,例如:         PERCENT_RANK() OVER(PARTITION BY 分组列名 ORDER BY 目标列名) AS 目标列名_分位数         如果是需要在代码逻辑部分进行分位数的计算,就需要我们自己写一个工具类来支持计算了 import static ja

OpenStack离线Train版安装系列—2计算节点-环境准备

本系列文章包含从OpenStack离线源制作到完成OpenStack安装的全部过程。 在本系列教程中使用的OpenStack的安装版本为第20个版本Train(简称T版本),2020年5月13日,OpenStack社区发布了第21个版本Ussuri(简称U版本)。 OpenStack部署系列文章 OpenStack Victoria版 安装部署系列教程 OpenStack Ussuri版

新一代车载(E/E)架构下的中央计算载体---HPC软件架构简介

老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节能减排。 无人问津也好,技不如人也罢,你都要试着安静下来,去做自己该做的事.而不是让内心的烦躁、焦虑、毁掉你本就不多的热情和定力。 时间不知不觉中,快要来到夏末秋初。一年又过去了一大半,成