百度松果菁英班——机器学习实践六:股票行情爬取与分析

2024-04-09 23:52

本文主要是介绍百度松果菁英班——机器学习实践六:股票行情爬取与分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

飞桨AI Studio星河社区-人工智能学习与实训社区

这篇文章好像有点大,所以上边网页点进去是看不到的,进入环境之后就能看了

🥪必要包的下载导入

!pip install fake_useragent
!pip install bs4
!cp /home/aistudio/simhei.ttf /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf/
!cp  /home/aistudio/simhei.ttf  .fonts/
!rm -rf .cache/matplotlib

🥪股票信息爬取

#coding=utf-8
'''
Created on 2021年02月20日
​
@author: zhongshan
'''
#http://quote.eastmoney.com/center/gridlist.html
#爬取该页面股票信息
​
import requests
from fake_useragent import UserAgent
from bs4 import BeautifulSoup 
import json
import csvdef getHtml(url):r = requests.get(url,headers={'User-Agent': UserAgent().random,})r.encoding = r.apparent_encodingreturn r.text#num为爬取多少条记录,可手动设置
num = 20
#该地址为页面实际获取数据的接口地址
stockUrl='http://99.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112408733409809437476_1623137764048&pn=1&pz=20&po=1&np=1&ut=bd1d9ddb04089700cf9c27f6f7426281&fltt=2&invt=2&fid=f3&fs=m:0+t:80&fields=f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152&_=1623137764167:formatted'
if __name__ == '__main__':responseText = getHtml(stockUrl)jsonText = responseText.split("(")[1].split(")")[0];resJson = json.loads(jsonText)datas = resJson["data"]["diff"] datalist = []for data in datas:# if (str().startswith('6') or str(data["f12"]).startswith('3') or str(data["f12"]).startswith('0')):row = [data["f12"],data["f14"]]datalist.append(row)print(datalist)     f =open('stock.csv','w+',encoding='utf-8',newline="")writer = csv.writer(f)writer.writerow(('代码', '名称'))for data in datalist:writer.writerow((data[0]+"\t",data[1]+"\t"))f.close()
  • 定义了一个函数getHtml(url),用于获取指定URL页面的HTML内容。使用requests.get()方法发送GET请求,通过fake_useragent生成随机的User-Agent来伪装请求头,避免被网站封禁IP。然后设置编码为页面的apparent_encoding,确保编码正确

  • 设置要爬取的记录条数num

  • 定义了变量stockUrl,该地址为页面实际获取数据的接口地址。通过该接口地址可以获取股票信息的JSON数据

  • 在主程序中,调用getHtml(stockUrl)方法获取页面的HTML内容

  • 解析HTML内容,提取出JSON数据。首先使用split()方法分割字符串,提取出JSON文本部分。然后使用json.loads()方法将JSON文本解析为Python字典

  • 从解析后的JSON数据中提取股票信息,并存储到列表datalist

  • 打开文件stock.csv,使用CSV模块创建一个写入对象writer,将股票信息写入CSV文件中

  • 遍历datalist列表,将每条股票信息写入CSV文件中

  • 关闭CSV文件

🥪多线程并发下载股票数据文件并存储为CSV格式

import csv
import urllib.request as r
import threading#读取之前获取的个股csv丢入到一个列表中
def getStockList():stockList = []f = open('stock.csv','r',encoding='utf-8')f.seek(0)reader = csv.reader(f)for item in reader:stockList.append(item)f.close()return stockListdef downloadFile(url,filepath):# print(filepath)try:r.urlretrieve(url,filepath)except Exception as e:print(e)print(filepath,"is downloaded")pass#设置信号量,控制线程并发数
sem = threading.Semaphore(1)
def downloadFileSem(url,filepath):with sem:downloadFile(url,filepath)urlStart = 'http://quotes.money.163.com/service/chddata.html?code='
urlEnd = '&end=20210221&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;VOTURNOVER;VATURNOVER'if __name__ == '__main__':stockList = getStockList()stockList.pop(0)print(stockList)for s in stockList:scode = str(s[0].split("\t")[0])#0:沪市;1:深市url = urlStart + ("0" if scode.startswith('6') else "1") + scode + urlEndprint(url)filepath = (str(s[1].split("\t")[0])+"_"+scode) + ".csv"threading.Thread(target=downloadFileSem,args=(url,filepath)).start()
  • 定义了一个新的函数getStockList(),用于从之前获取的个股CSV文件中读取数据,并将其存储到一个列表中。通过csv.reader()方法逐行读取CSV文件,并将每一行数据存储为一个列表,最后将所有列表存储到stockList

  • 定义了一个新的函数downloadFile(url, filepath),用于下载文件。通过urllib.request.urlretrieve()方法下载指定URL的文件,并保存到指定的路径

  • 引入了threading模块,用于创建线程实现多线程下载

  • 定义了一个信号量sem,用于控制线程并发数。在多线程环境下,为了避免资源竞争和死锁,可以使用信号量来限制同时执行的线程数量

  • 定义了一个新的函数downloadFileSem(url, filepath),在该函数中使用了信号量sem来限制并发数,然后调用downloadFile()函数下载文件

  • 修改了urlStarturlEnd变量,用于构造下载文件的URL。根据个股代码的首位数字(0表示沪市,1表示深市),选择对应的交易所代码

  • 在主程序中,获取之前获取的个股列表stockList,然后依次遍历每个股票信息

  • 对于每个股票信息,提取股票代码和名称,并构造对应的下载URL和文件路径

  • 创建一个新的线程,通过threading.Thread()方法传入目标函数downloadFileSem和参数,启动线程并进行下载

🥪股票信息分析

import pandas as pd
import matplotlib.pyplot as plt
import csv
# 设置显示中文
plt.rcParams['font.sans-serif'] = ['simhei'] # 指定默认字体 
plt.rcParams['axes.unicode_minus']=False # 用来显示负号 
plt.rcParams['figure.dpi'] = 100 # 每英寸点数 
​
files = []
# ['日期' '股票代码' '名称' '收盘价' '最高价' '最低价' '开盘价' '前收盘' '涨跌额' '涨跌幅' '成交量' '成交金额']
def read_file(file_name):data = pd.read_csv(file_name,encoding='gbk')  col_name = data.columns.values return data, col_name
​
def get_files_path():stock_list=getStockList()paths = []for stock in stock_list[1:]:p = stock[1].strip()+"_"+stock[0].strip()+".csv" print(p) data,_ = read_file(p)if len(data)>1:files.append(p) print(p)
get_files_path()
print(files)​
​
​
# 获取股票的涨跌额及涨跌幅度变化曲线
# ['日期' '股票代码' '名称' '收盘价' '最高价' '最低价' '开盘价' '前收盘' '涨跌额' '涨跌幅' '成交量' '成交金额']
def get_diff(file_name):data, col_name = read_file(file_name)index = len(data['日期'])-1sep = index//15plt.figure(figsize=(15,17))  
​x = data['日期'].values.tolist()x.reverse()# x = x[-index:]
​xticks=list(range(0,len(x),sep))xlabels=[x[i] for i in xticks]xticks.append(len(x))# xlabels.append(x[-1])y1 = [float(c) if c!='None' else 0 for c in data['涨跌额'].values.tolist()]y2=[float(c) if c!='None' else 0 for c in data['涨跌幅'].values.tolist()]y1.reverse()y2.reverse()# y1 = y1[-index:]# y2 = y2[-index:]
​ax1 = plt.subplot(211)plt.plot(range(1,len(x)+1),y1,c='r')plt.title('{}-涨跌额/涨跌幅'.format(file_name.split('_')[0]),fontsize=20)ax1.set_xticks(xticks)ax1.set_xticklabels(xlabels, rotation=40)# plt.xlabel('日期')plt.ylabel('涨跌额',fontsize=20)
​ax2 = plt.subplot(212)plt.plot(range(1,len(x)+1),y2,c='g')# plt.title('{}-涨跌幅'.format(file_name.split('_')[0]))ax2.set_xticks(xticks)ax2.set_xticklabels(xlabels, rotation=40)plt.xlabel('日期',fontsize=20)plt.ylabel('涨跌幅',fontsize=20) 
​plt.savefig('work/'+file_name.split('.')[0]+'_diff.png')plt.show()
​
​
def get_max_min(file_name):data, col_name = read_file(file_name)index = len(data['日期'])-1sep = index//15plt.figure(figsize=(15,10))  
​x = data['日期'].values.tolist()x.reverse()x = x[-index:]
​xticks=list(range(0,len(x),sep))xlabels=[x[i] for i in xticks]xticks.append(len(x))# xlabels.append(x[-1])y1 = [float(c) if c!='None' else 0 for c in data['最高价'].values.tolist()]y2=[float(c) if c!='None' else 0 for c in data['最低价'].values.tolist()]y1.reverse()y2.reverse()y1 = y1[-index:]y2 = y2[-index:]
​ax = plt.subplot(111)plt.plot(range(1,len(x)+1),y1,c='r',linestyle="-")plt.plot(range(1,len(x)+1),y2,c='g',linestyle="--")
​plt.title('{}-最高价/最低价'.format(file_name.split('_')[0]),fontsize=20)ax.set_xticks(xticks)ax.set_xticklabels(xlabels, rotation=40)plt.xlabel('日期',fontsize=20)plt.ylabel('价格',fontsize=20) plt.legend(['最高价','最低价'],fontsize=20)plt.savefig('work/'+file_name.split('.')[0]+'_minmax.png')plt.show() 
​
def get_deal(file_name):data, col_name = read_file(file_name)index = len(data['日期'])-1sep = index//15plt.figure(figsize=(15,10))  
​x = data['日期'].values.tolist()x.reverse()x = x[-index:]
​xticks=list(range(0,len(x),sep))xlabels=[x[i] for i in xticks]xticks.append(len(x))# xlabels.append(x[-1])y1 = [float(c) if c!='None' else 0 for c in data['成交量'].values.tolist()]y2=[float(c) if c!='None' else 0 for c in data['成交金额'].values.tolist()] y1.reverse()y2.reverse()y1 = y1[-index:]y2 = y2[-index:]
​ax = plt.subplot(111)plt.plot(range(1,len(x)+1),y1,c='b',linestyle="-")plt.plot(range(1,len(x)+1),y2,c='r',linestyle="--")
​plt.title('{}-成交量/成交金额'.format(file_name.split('_')[0]),fontsize=20)ax.set_xticks(xticks)ax.set_xticklabels(xlabels, rotation=40)plt.xlabel('日期',fontsize=20)# plt.ylabel('') plt.legend(['成交量','成交金额'],fontsize=20)plt.savefig('work/'+file_name.split('.')[0]+'_deal.png')plt.show() 
​
def get_rel(file_name):data, col_name = read_file(file_name)index = len(data['日期'])-1sep = index//15plt.figure(figsize=(15,10))  
​x = data['日期'].values.tolist()x.reverse()x = x[-index:]
​xticks=list(range(0,len(x),sep))xlabels=[x[i] for i in xticks]xticks.append(len(x))# xlabels.append(x[-1])y1 = [float(c) if c!='None' else 0 for c in data['成交量'].values.tolist()]y2=[float(c) if c!='None' else 0 for c in data['涨跌幅'].values.tolist()] y1.reverse()y2.reverse()y1 = y1[-index:]y2 = y2[-index:]y2 = [0] + y2[:-1]
​ax = plt.subplot(111)plt.scatter(y2,y1)
​plt.title('{}-成交量与前一天涨跌幅的关系'.format(file_name.split('_')[0]),fontsize=20)# ax.set_xticks(xticks)# ax.set_xticklabels(xlabels, rotation=40)plt.xlabel('前一天涨跌幅',fontsize=20)plt.ylabel('成交量',fontsize=20) # plt.legend(['成交量','成交金额'],fontsize=20)plt.savefig('work/'+file_name.split('.')[0]+'_rel.png')plt.show() 
# for file in files:
#     get_diff(file)
​
# for file in files:
#     get_max_min(file)
print(len(files))
for file in files:get_max_min(file)get_deal(file)get_diff(file)get_rel(file)
​
​
# read_file('润和软件_300339.csv')
# read_file('N迈拓_301006.csv')
# read_file('N崧盛_301002.csv')
  • read_file(file_name)函数:读取CSV文件并返回数据以及列名

  • get_files_path()函数:获取文件路径,并将文件名添加到列表files中。首先调用了getStockList()函数获取个股列表,然后遍历每个个股,在文件名中提取股票代码和名称,并根据文件名读取数据。如果数据长度大于1,则将文件名添加到files列表中

  • get_diff(file_name)函数:根据给定的文件名绘制股票的涨跌额和涨跌幅变化曲线。首先读取指定文件的数据,然后提取日期、涨跌额和涨跌幅数据。根据数据量确定x轴刻度的间隔,然后绘制两个子图,分别表示涨跌额和涨跌幅。在子图中,横轴表示日期,纵轴分别表示涨跌额和涨跌幅。最后保存图片并展示

  • get_max_min 函数绘制了最高价和最低价的折线图

  • get_deal 函数绘制了成交量和成交金额的折线图

  • get_rel 函数绘制了成交量与前一天涨跌幅的散点图

文件里面画了很多图,但是都太大了,截不全,感兴趣的朋友可以进链接里看一下。

🥗有什么问题我们随时评论区见~

⭐点赞收藏不迷路~

这篇关于百度松果菁英班——机器学习实践六:股票行情爬取与分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889566

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑