(表征学习论文阅读)A Simple Framework for Contrastive Learning of Visual Representations

本文主要是介绍(表征学习论文阅读)A Simple Framework for Contrastive Learning of Visual Representations,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]//International conference on machine learning. PMLR, 2020: 1597-1607.

1. 前言

本文作者为了了解对比学习是如何学习到有效的表征,对本文所提出的三大组件进行了全面的研究:

  1. 各种数据增强手段的组合在表征学习中起到了重要作用;
  2. 在表征和对比损失之间引入非线性变换能够有效提高表征质量;
  3. 对比学习相较于监督学习需要更大的batch size和更多的训练步数。

在没有人类标注或者监督的情况下学习数据的有效表征是一个长期存在的难题,目前的主要工作可以分为两类:

  1. 基于生成模型的方法
    例如VQ-VAE,MAE,BERT
  2. 基于判别模型的方法
    例如MoCo,CLIP

2. 方法

本文提出了一个框架SimCLR,通过最大化同一数据的不同数据增强处理后的两个视角之间的相似度来学习有效表征。
在这里插入图片描述

  1. 如图所示,本文首先将数据 x x x进行两个不同的增强,这里作者使用了三种简单的数据增强方法:随机裁剪后再调整到原始大小、随机颜色失真、高斯模糊。
  2. f ( ∙ ) f(\bullet) f()代表编码器,这里作者使用的是同一个编码器来对两个视角数据进行编码
  3. 最后编码器输出的结果通过非线性变换 g ( ∙ ) g(\bullet) g()得到 z i z_i zi z j z_j zj,两个向量构成了一组正例,进行相似度计算,也就是简单的单位向量内积计算出余弦相似度。目标就是最大化两者的余弦相似度。同时,一个batch中其他的数据构成了负例,最小化与负例的相似度。注意最终训练完成的编码器我们是需要舍弃掉非线性变换的。
    本文使用的损失函数就是最基本的InfoNCE损失,具体可以参考我的另一篇讲解InfoNCE的博文。
    在这里插入图片描述
    在这里插入图片描述

3. 代码

这里仅提供文章提到的两个点的代码:

  1. 数据增强
    高斯模糊
import numpy as np
import torch
from torch import nn
from torchvision.transforms import transformsnp.random.seed(0)class GaussianBlur(object):"""blur a single image on CPU"""def __init__(self, kernel_size):radias = kernel_size // 2kernel_size = radias * 2 + 1self.blur_h = nn.Conv2d(3, 3, kernel_size=(kernel_size, 1),stride=1, padding=0, bias=False, groups=3)self.blur_v = nn.Conv2d(3, 3, kernel_size=(1, kernel_size),stride=1, padding=0, bias=False, groups=3)self.k = kernel_sizeself.r = radiasself.blur = nn.Sequential(nn.ReflectionPad2d(radias),self.blur_h,self.blur_v)self.pil_to_tensor = transforms.ToTensor()self.tensor_to_pil = transforms.ToPILImage()def __call__(self, img):img = self.pil_to_tensor(img).unsqueeze(0)sigma = np.random.uniform(0.1, 2.0)x = np.arange(-self.r, self.r + 1)x = np.exp(-np.power(x, 2) / (2 * sigma * sigma))x = x / x.sum()x = torch.from_numpy(x).view(1, -1).repeat(3, 1)self.blur_h.weight.data.copy_(x.view(3, 1, self.k, 1))self.blur_v.weight.data.copy_(x.view(3, 1, 1, self.k))with torch.no_grad():img = self.blur(img)img = img.squeeze()img = self.tensor_to_pil(img)return img

组合各类增强手段

class ContrastiveLearningDataset:def __init__(self, root_folder=r"D:\pyproject\representation_learning\data"):self.root_folder = root_folder@staticmethoddef get_simclr_pipeline_transform(size, s=1):"""Return a set of data augmentation transformations as described in the SimCLR paper."""color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s)data_transforms = transforms.Compose([transforms.RandomResizedCrop(size=size),transforms.RandomHorizontalFlip(),transforms.RandomApply([color_jitter], p=0.8),transforms.RandomGrayscale(p=0.2),GaussianBlur(kernel_size=int(0.1 * size)),transforms.ToTensor()])return data_transformsdef get_dataset(self, name, n_views):valid_datasets = {'cifar10': lambda: datasets.CIFAR10(self.root_folder, train=True,transform=ContrastiveLearningViewGenerator(self.get_simclr_pipeline_transform(32),n_views),download=True),'stl10': lambda: datasets.STL10(self.root_folder, split='unlabeled',transform=ContrastiveLearningViewGenerator(self.get_simclr_pipeline_transform(96),n_views),download=True)}try:dataset_fn = valid_datasets[name]except KeyError:raise InvalidDatasetSelection()else:return dataset_fn()
  1. 非线性变换
class ResNetSimCLR(nn.Module):def __init__(self, base_model, out_dim):super(ResNetSimCLR, self).__init__()self.resnet_dict = {"resnet18": models.resnet18(pretrained=False, num_classes=out_dim),"resnet50": models.resnet50(pretrained=False, num_classes=out_dim)}self.backbone = self._get_basemodel(base_model)dim_mlp = self.backbone.fc.in_features# add mlp projection head# 修改resnet最后一层的全连接层即可self.backbone.fc = nn.Sequential(nn.Linear(dim_mlp, dim_mlp), nn.ReLU(), self.backbone.fc)def _get_basemodel(self, model_name):try:model = self.resnet_dict[model_name]except KeyError:raise InvalidBackboneError("Invalid backbone architecture. Check the config file and pass one of: resnet18 or resnet50")else:return modeldef forward(self, x):return self.backbone(x)

这篇关于(表征学习论文阅读)A Simple Framework for Contrastive Learning of Visual Representations的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887836

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学