Akka(41): Http:DBTable-rows streaming - 数据库表行交换

2024-04-09 04:48

本文主要是介绍Akka(41): Http:DBTable-rows streaming - 数据库表行交换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在前面一篇讨论里我们介绍了通过http进行文件的交换。因为文件内容是以一堆bytes来表示的,而http消息的数据部分也是byte类型的,所以我们可以直接用Source[ByteString,_]来读取文件然后放进HttpEntity中。我们还提到:如果需要进行数据库数据交换的话,可以用Source[ROW,_]来表示库表行,但首先必须进行ROW -> ByteString的转换。在上期讨论我们提到过这种转换其实是ROW->Json->ByteString或者反方向的转换,在Akka-http里称之为Marshalling和Unmarshalling。Akka-http的Marshalling实现采用了type-class编程模式,需要为每一种类型与Json的转换在可视域内提供Marshaller[A,B]类型的隐式实例。Akka-http默认的Json工具库是Spray-Json,着重case class,而且要提供JsonFormat?(case-class),其中?代表case class的参数个数,用起来略显复杂。不过因为是Akka-http的配套库,在将来Akka-http的持续发展中具有一定的优势,所以我们还是用它来进行下面的示范。

下面就让我们开始写些代码吧。首先,我们用一个case class代表数据库表行结构,然后用它作为流元素来构建一个Source,如下:

  case class County(id: Int, name: String)val source: Source[County, NotUsed] = Source(1 to 5).map { i => County(i, s"中国广东省地区编号 #$i") }

我们先设计服务端的数据下载部分:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupporttrait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)val source: Source[County, NotUsed] = Source(1 to 5).map { i => County(i, s"中国广东省地区编号 #$i") }implicit val countyFormat = jsonFormat2(County)
}object HttpDBServer extends App {import Converters._implicit val httpSys = ActorSystem("httpSystem")implicit val httpMat = ActorMaterializer()implicit val httpEC = httpSys.dispatcherimplicit val jsonStreamingSupport = EntityStreamingSupport.json().withParallelMarshalling(parallelism = 8, unordered = false)val route =path("rows") {get {complete {source}}}val (port, host) = (8011,"localhost")val bindingFuture = Http().bindAndHandle(route,host,port)println(s"Server running at $host $port. Press any key to exit ...")scala.io.StdIn.readLine()bindingFuture.flatMap(_.unbind()).onComplete(_ => httpSys.terminate())}

在上面的代码里我们直接把source放进了complete(),然后期望这个directive能通过ToEntityMarshaller[County]类实例用Spray-Json把Source[County,NotUsed]转换成Source[ByteString,NotUsed]然后放入HttpResponse的HttpEntity里。转换结果只能在客户端得到证实。我们知道HttpResponse里的Entity.dataBytes就是一个Source[ByteString,_],我们可以把它Unmarshall成Source[County,_],然后用Akka-stream来操作:

      case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>val futSource = Unmarshal(entity).to[Source[County,NotUsed]]futSource.onSuccess {case source => source.runForeach(println)}


上面这个Unmarshal调用了下面这个FromEntityUnmarshaller[County]隐式实例:

  // support for as[Source[T, NotUsed]]implicit def sprayJsonSourceReader[T](implicit reader: RootJsonReader[T], support: EntityStreamingSupport): FromEntityUnmarshaller[Source[T, NotUsed]] =Unmarshaller.withMaterializer { implicit ec ⇒ implicit mat ⇒ e ⇒if (support.supported.matches(e.contentType)) {val frames = e.dataBytes.via(support.framingDecoder)val unmarshal = sprayJsonByteStringUnmarshaller(reader)(_)val unmarshallingFlow =if (support.unordered) Flow[ByteString].mapAsyncUnordered(support.parallelism)(unmarshal)else Flow[ByteString].mapAsync(support.parallelism)(unmarshal)val elements = frames.viaMat(unmarshallingFlow)(Keep.right)FastFuture.successful(elements)} else FastFuture.failed(Unmarshaller.UnsupportedContentTypeException(support.supported))}

这个隐式实例是由Spray-Jason提供的,在SprayJsonSupport.scala里。
下面是这部分客户端的完整代码:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import scala.util._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.unmarshalling.Unmarshaltrait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)implicit val countyFormat = jsonFormat2(County)
}object HttpDBClient extends App {import Converters._implicit val sys = ActorSystem("ClientSys")implicit val mat = ActorMaterializer()implicit val ec = sys.dispatcherimplicit val jsonStreamingSupport: JsonEntityStreamingSupport = EntityStreamingSupport.json()def downloadRows(request: HttpRequest) = {val futResp = Http(sys).singleRequest(request)futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>val futSource = Unmarshal(entity).to[Source[County,NotUsed]]futSource.onSuccess {case source => source.runForeach(println)}case Success(r@HttpResponse(code, _, _, _)) =>println(s"download request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to download rows!")case Failure(err) => println(s"download failed: ${err.getMessage}")}}downloadRows(HttpRequest(HttpMethods.GET,uri = s"http://localhost:8011/rows"))scala.io.StdIn.readLine()sys.terminate()}

以上我们已经实现了客户端从服务端下载一段数据库表行,然后以Akka-stream的操作方式来处理下载数据。那么反向交换即从客户端上传一段表行的话就需要把一个Source[T,_]转换成Source[ByteString,_]然后放进HttpRequest的HttpEntity里。服务端收到数据后又要进行反向的转换即把Request.Entity.dataBytes从Source[ByteString,_]转回Source[T,_]。Akka-http在客户端没有提供像complete这样的强大的自动化功能。我们可能需要自定义并提供像ToRequestMarshaller[Source[T,_]]这样的隐式实例。但Akka-http的Marshalling-type-class是个非常复杂的系统。如果我们的目的是简单提供一个Source[ByteString,_],我们是否可以直接调用Spray-Json的函数来进行ROW->Son->ByteString转换呢?如下:

  import akka.util.ByteStringimport akka.http.scaladsl.model.HttpEntity.limitableByteSourceval source: Source[County,NotUsed] = Source(1 to 5).map {i => County(i, s"广西壮族自治区地市县编号 #$i")}def countyToByteString(c: County) = {ByteString(c.toJson.toString)}val flowCountyToByteString : Flow[County,ByteString,NotUsed] = Flow.fromFunction(countyToByteString)val rowBytes = limitableByteSource(source via flowCountyToByteString)val request = HttpRequest(HttpMethods.POST,uri = s"http://localhost:8011/rows")val data = HttpEntity(ContentTypes.`application/json`,rowBytes)

我们直接用toJson函数进行County->Json转换实现了flowCountyToByteString。toJason是Spray-Json提供的一个函数:

package json {case class DeserializationException(msg: String, cause: Throwable = null, fieldNames: List[String] = Nil) extends RuntimeException(msg, cause)class SerializationException(msg: String) extends RuntimeException(msg)private[json] class PimpedAny[T](any: T) {def toJson(implicit writer: JsonWriter[T]): JsValue = writer.write(any)}private[json] class PimpedString(string: String) {@deprecated("deprecated in favor of parseJson", "1.2.6")def asJson: JsValue = parseJsondef parseJson: JsValue = JsonParser(string)}
}

假设服务端收到数据后以Akka-stream方式再转换成一个List返回,我们用下面的方法来测试功能:

  def uploadRows(request: HttpRequest, dataEntity: RequestEntity) = {val futResp = Http(sys).singleRequest(request.copy(entity = dataEntity))futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>entity.dataBytes.map(_.utf8String).runForeach(println)case Success(r@HttpResponse(code, _, _, _)) =>println(s"Upload request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to Upload file!")case Failure(err) => println(s"Upload failed: ${err.getMessage}")}}

服务端接收数据处理方法如下:

     post {withoutSizeLimit {entity(asSourceOf[County]) { source =>val futofNames: Future[List[String]] =source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))complete {futofNames}}}}

考虑到在数据转换的过程中可能会出现异常。需要异常处理方法来释放backpressure:

  def postExceptionHandler: ExceptionHandler =ExceptionHandler {case _: RuntimeException =>extractRequest { req =>req.discardEntityBytes()complete((StatusCodes.InternalServerError.intValue,"Upload Failed!"))}}post {withoutSizeLimit {handleExceptions(postExceptionHandler) {entity(asSourceOf[County]) { source =>val futofNames: Future[List[String]] =source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))complete {futofNames}}}}}

在客户端试运行返回结果显示:

  uploadRows(request,data)["","广西壮族自治区地市县编号 #1","广西壮族自治区地市县编号 #2","广西壮族自治区地市县编号 #3","广西壮族自治区地市县编号 #4","广西壮族自治区地市县编号 #5"]

正是我们期待的结果。

下面是本次讨论的示范代码:

服务端:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import scala.concurrent._
import akka.http.scaladsl.server._
import akka.http.scaladsl.server.Directives._
import akka.http.scaladsl.model._trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)val source: Source[County, NotUsed] = Source(1 to 5).map { i => County(i, s"中国广东省地区编号 #$i") }implicit val countyFormat = jsonFormat2(County)
}object HttpDBServer extends App {import Converters._implicit val httpSys = ActorSystem("httpSystem")implicit val httpMat = ActorMaterializer()implicit val httpEC = httpSys.dispatcherimplicit val jsonStreamingSupport = EntityStreamingSupport.json().withParallelMarshalling(parallelism = 8, unordered = false)def postExceptionHandler: ExceptionHandler =ExceptionHandler {case _: RuntimeException =>extractRequest { req =>req.discardEntityBytes()complete((StatusCodes.InternalServerError.intValue,"Upload Failed!"))}}val route =path("rows") {get {complete {source}} ~post {withoutSizeLimit {handleExceptions(postExceptionHandler) {entity(asSourceOf[County]) { source =>val futofNames: Future[List[String]] =source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))complete {futofNames}}}}}}val (port, host) = (8011,"localhost")val bindingFuture = Http().bindAndHandle(route,host,port)println(s"Server running at $host $port. Press any key to exit ...")scala.io.StdIn.readLine()bindingFuture.flatMap(_.unbind()).onComplete(_ => httpSys.terminate())}

客户端:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import scala.util._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.unmarshalling._trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)implicit val countyFormat = jsonFormat2(County)
}object HttpDBClient extends App {import Converters._implicit val sys = ActorSystem("ClientSys")implicit val mat = ActorMaterializer()implicit val ec = sys.dispatcherimplicit val jsonStreamingSupport: JsonEntityStreamingSupport = EntityStreamingSupport.json()def downloadRows(request: HttpRequest) = {val futResp = Http(sys).singleRequest(request)futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>val futSource = Unmarshal(entity).to[Source[County,NotUsed]]futSource.onSuccess {case source => source.runForeach(println)}case Success(r@HttpResponse(code, _, _, _)) =>println(s"download request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to download rows!")case Failure(err) => println(s"download failed: ${err.getMessage}")}}downloadRows(HttpRequest(HttpMethods.GET,uri = s"http://localhost:8011/rows"))import akka.util.ByteStringimport akka.http.scaladsl.model.HttpEntity.limitableByteSourceval source: Source[County,NotUsed] = Source(1 to 5).map {i => County(i, s"广西壮族自治区地市县编号 #$i")}def countyToByteString(c: County) = {ByteString(c.toJson.toString)}val flowCountyToByteString : Flow[County,ByteString,NotUsed] = Flow.fromFunction(countyToByteString)val rowBytes = limitableByteSource(source via flowCountyToByteString)val request = HttpRequest(HttpMethods.POST,uri = s"http://localhost:8011/rows")val data = HttpEntity(ContentTypes.`application/json`,rowBytes)def uploadRows(request: HttpRequest, dataEntity: RequestEntity) = {val futResp = Http(sys).singleRequest(request.copy(entity = dataEntity))futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>entity.dataBytes.map(_.utf8String).runForeach(println)case Success(r@HttpResponse(code, _, _, _)) =>println(s"Upload request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to Upload file!")case Failure(err) => println(s"Upload failed: ${err.getMessage}")}}uploadRows(request,data)scala.io.StdIn.readLine()sys.terminate()}





这篇关于Akka(41): Http:DBTable-rows streaming - 数据库表行交换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887209

相关文章

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

postgresql数据库基本操作及命令详解

《postgresql数据库基本操作及命令详解》本文介绍了PostgreSQL数据库的基础操作,包括连接、创建、查看数据库,表的增删改查、索引管理、备份恢复及退出命令,适用于数据库管理和开发实践,感兴... 目录1. 连接 PostgreSQL 数据库2. 创建数据库3. 查看当前数据库4. 查看所有数据库

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指