Akka(41): Http:DBTable-rows streaming - 数据库表行交换

2024-04-09 04:48

本文主要是介绍Akka(41): Http:DBTable-rows streaming - 数据库表行交换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在前面一篇讨论里我们介绍了通过http进行文件的交换。因为文件内容是以一堆bytes来表示的,而http消息的数据部分也是byte类型的,所以我们可以直接用Source[ByteString,_]来读取文件然后放进HttpEntity中。我们还提到:如果需要进行数据库数据交换的话,可以用Source[ROW,_]来表示库表行,但首先必须进行ROW -> ByteString的转换。在上期讨论我们提到过这种转换其实是ROW->Json->ByteString或者反方向的转换,在Akka-http里称之为Marshalling和Unmarshalling。Akka-http的Marshalling实现采用了type-class编程模式,需要为每一种类型与Json的转换在可视域内提供Marshaller[A,B]类型的隐式实例。Akka-http默认的Json工具库是Spray-Json,着重case class,而且要提供JsonFormat?(case-class),其中?代表case class的参数个数,用起来略显复杂。不过因为是Akka-http的配套库,在将来Akka-http的持续发展中具有一定的优势,所以我们还是用它来进行下面的示范。

下面就让我们开始写些代码吧。首先,我们用一个case class代表数据库表行结构,然后用它作为流元素来构建一个Source,如下:

  case class County(id: Int, name: String)val source: Source[County, NotUsed] = Source(1 to 5).map { i => County(i, s"中国广东省地区编号 #$i") }

我们先设计服务端的数据下载部分:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupporttrait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)val source: Source[County, NotUsed] = Source(1 to 5).map { i => County(i, s"中国广东省地区编号 #$i") }implicit val countyFormat = jsonFormat2(County)
}object HttpDBServer extends App {import Converters._implicit val httpSys = ActorSystem("httpSystem")implicit val httpMat = ActorMaterializer()implicit val httpEC = httpSys.dispatcherimplicit val jsonStreamingSupport = EntityStreamingSupport.json().withParallelMarshalling(parallelism = 8, unordered = false)val route =path("rows") {get {complete {source}}}val (port, host) = (8011,"localhost")val bindingFuture = Http().bindAndHandle(route,host,port)println(s"Server running at $host $port. Press any key to exit ...")scala.io.StdIn.readLine()bindingFuture.flatMap(_.unbind()).onComplete(_ => httpSys.terminate())}

在上面的代码里我们直接把source放进了complete(),然后期望这个directive能通过ToEntityMarshaller[County]类实例用Spray-Json把Source[County,NotUsed]转换成Source[ByteString,NotUsed]然后放入HttpResponse的HttpEntity里。转换结果只能在客户端得到证实。我们知道HttpResponse里的Entity.dataBytes就是一个Source[ByteString,_],我们可以把它Unmarshall成Source[County,_],然后用Akka-stream来操作:

      case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>val futSource = Unmarshal(entity).to[Source[County,NotUsed]]futSource.onSuccess {case source => source.runForeach(println)}


上面这个Unmarshal调用了下面这个FromEntityUnmarshaller[County]隐式实例:

  // support for as[Source[T, NotUsed]]implicit def sprayJsonSourceReader[T](implicit reader: RootJsonReader[T], support: EntityStreamingSupport): FromEntityUnmarshaller[Source[T, NotUsed]] =Unmarshaller.withMaterializer { implicit ec ⇒ implicit mat ⇒ e ⇒if (support.supported.matches(e.contentType)) {val frames = e.dataBytes.via(support.framingDecoder)val unmarshal = sprayJsonByteStringUnmarshaller(reader)(_)val unmarshallingFlow =if (support.unordered) Flow[ByteString].mapAsyncUnordered(support.parallelism)(unmarshal)else Flow[ByteString].mapAsync(support.parallelism)(unmarshal)val elements = frames.viaMat(unmarshallingFlow)(Keep.right)FastFuture.successful(elements)} else FastFuture.failed(Unmarshaller.UnsupportedContentTypeException(support.supported))}

这个隐式实例是由Spray-Jason提供的,在SprayJsonSupport.scala里。
下面是这部分客户端的完整代码:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import scala.util._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.unmarshalling.Unmarshaltrait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)implicit val countyFormat = jsonFormat2(County)
}object HttpDBClient extends App {import Converters._implicit val sys = ActorSystem("ClientSys")implicit val mat = ActorMaterializer()implicit val ec = sys.dispatcherimplicit val jsonStreamingSupport: JsonEntityStreamingSupport = EntityStreamingSupport.json()def downloadRows(request: HttpRequest) = {val futResp = Http(sys).singleRequest(request)futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>val futSource = Unmarshal(entity).to[Source[County,NotUsed]]futSource.onSuccess {case source => source.runForeach(println)}case Success(r@HttpResponse(code, _, _, _)) =>println(s"download request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to download rows!")case Failure(err) => println(s"download failed: ${err.getMessage}")}}downloadRows(HttpRequest(HttpMethods.GET,uri = s"http://localhost:8011/rows"))scala.io.StdIn.readLine()sys.terminate()}

以上我们已经实现了客户端从服务端下载一段数据库表行,然后以Akka-stream的操作方式来处理下载数据。那么反向交换即从客户端上传一段表行的话就需要把一个Source[T,_]转换成Source[ByteString,_]然后放进HttpRequest的HttpEntity里。服务端收到数据后又要进行反向的转换即把Request.Entity.dataBytes从Source[ByteString,_]转回Source[T,_]。Akka-http在客户端没有提供像complete这样的强大的自动化功能。我们可能需要自定义并提供像ToRequestMarshaller[Source[T,_]]这样的隐式实例。但Akka-http的Marshalling-type-class是个非常复杂的系统。如果我们的目的是简单提供一个Source[ByteString,_],我们是否可以直接调用Spray-Json的函数来进行ROW->Son->ByteString转换呢?如下:

  import akka.util.ByteStringimport akka.http.scaladsl.model.HttpEntity.limitableByteSourceval source: Source[County,NotUsed] = Source(1 to 5).map {i => County(i, s"广西壮族自治区地市县编号 #$i")}def countyToByteString(c: County) = {ByteString(c.toJson.toString)}val flowCountyToByteString : Flow[County,ByteString,NotUsed] = Flow.fromFunction(countyToByteString)val rowBytes = limitableByteSource(source via flowCountyToByteString)val request = HttpRequest(HttpMethods.POST,uri = s"http://localhost:8011/rows")val data = HttpEntity(ContentTypes.`application/json`,rowBytes)

我们直接用toJson函数进行County->Json转换实现了flowCountyToByteString。toJason是Spray-Json提供的一个函数:

package json {case class DeserializationException(msg: String, cause: Throwable = null, fieldNames: List[String] = Nil) extends RuntimeException(msg, cause)class SerializationException(msg: String) extends RuntimeException(msg)private[json] class PimpedAny[T](any: T) {def toJson(implicit writer: JsonWriter[T]): JsValue = writer.write(any)}private[json] class PimpedString(string: String) {@deprecated("deprecated in favor of parseJson", "1.2.6")def asJson: JsValue = parseJsondef parseJson: JsValue = JsonParser(string)}
}

假设服务端收到数据后以Akka-stream方式再转换成一个List返回,我们用下面的方法来测试功能:

  def uploadRows(request: HttpRequest, dataEntity: RequestEntity) = {val futResp = Http(sys).singleRequest(request.copy(entity = dataEntity))futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>entity.dataBytes.map(_.utf8String).runForeach(println)case Success(r@HttpResponse(code, _, _, _)) =>println(s"Upload request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to Upload file!")case Failure(err) => println(s"Upload failed: ${err.getMessage}")}}

服务端接收数据处理方法如下:

     post {withoutSizeLimit {entity(asSourceOf[County]) { source =>val futofNames: Future[List[String]] =source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))complete {futofNames}}}}

考虑到在数据转换的过程中可能会出现异常。需要异常处理方法来释放backpressure:

  def postExceptionHandler: ExceptionHandler =ExceptionHandler {case _: RuntimeException =>extractRequest { req =>req.discardEntityBytes()complete((StatusCodes.InternalServerError.intValue,"Upload Failed!"))}}post {withoutSizeLimit {handleExceptions(postExceptionHandler) {entity(asSourceOf[County]) { source =>val futofNames: Future[List[String]] =source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))complete {futofNames}}}}}

在客户端试运行返回结果显示:

  uploadRows(request,data)["","广西壮族自治区地市县编号 #1","广西壮族自治区地市县编号 #2","广西壮族自治区地市县编号 #3","广西壮族自治区地市县编号 #4","广西壮族自治区地市县编号 #5"]

正是我们期待的结果。

下面是本次讨论的示范代码:

服务端:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import scala.concurrent._
import akka.http.scaladsl.server._
import akka.http.scaladsl.server.Directives._
import akka.http.scaladsl.model._trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)val source: Source[County, NotUsed] = Source(1 to 5).map { i => County(i, s"中国广东省地区编号 #$i") }implicit val countyFormat = jsonFormat2(County)
}object HttpDBServer extends App {import Converters._implicit val httpSys = ActorSystem("httpSystem")implicit val httpMat = ActorMaterializer()implicit val httpEC = httpSys.dispatcherimplicit val jsonStreamingSupport = EntityStreamingSupport.json().withParallelMarshalling(parallelism = 8, unordered = false)def postExceptionHandler: ExceptionHandler =ExceptionHandler {case _: RuntimeException =>extractRequest { req =>req.discardEntityBytes()complete((StatusCodes.InternalServerError.intValue,"Upload Failed!"))}}val route =path("rows") {get {complete {source}} ~post {withoutSizeLimit {handleExceptions(postExceptionHandler) {entity(asSourceOf[County]) { source =>val futofNames: Future[List[String]] =source.runFold(List[String](""))((acc, b) => acc ++ List(b.name))complete {futofNames}}}}}}val (port, host) = (8011,"localhost")val bindingFuture = Http().bindAndHandle(route,host,port)println(s"Server running at $host $port. Press any key to exit ...")scala.io.StdIn.readLine()bindingFuture.flatMap(_.unbind()).onComplete(_ => httpSys.terminate())}

客户端:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import scala.util._
import akka._
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport
import akka.http.scaladsl.unmarshalling._trait MyFormats extends SprayJsonSupport with DefaultJsonProtocol
object Converters extends MyFormats {case class County(id: Int, name: String)implicit val countyFormat = jsonFormat2(County)
}object HttpDBClient extends App {import Converters._implicit val sys = ActorSystem("ClientSys")implicit val mat = ActorMaterializer()implicit val ec = sys.dispatcherimplicit val jsonStreamingSupport: JsonEntityStreamingSupport = EntityStreamingSupport.json()def downloadRows(request: HttpRequest) = {val futResp = Http(sys).singleRequest(request)futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>val futSource = Unmarshal(entity).to[Source[County,NotUsed]]futSource.onSuccess {case source => source.runForeach(println)}case Success(r@HttpResponse(code, _, _, _)) =>println(s"download request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to download rows!")case Failure(err) => println(s"download failed: ${err.getMessage}")}}downloadRows(HttpRequest(HttpMethods.GET,uri = s"http://localhost:8011/rows"))import akka.util.ByteStringimport akka.http.scaladsl.model.HttpEntity.limitableByteSourceval source: Source[County,NotUsed] = Source(1 to 5).map {i => County(i, s"广西壮族自治区地市县编号 #$i")}def countyToByteString(c: County) = {ByteString(c.toJson.toString)}val flowCountyToByteString : Flow[County,ByteString,NotUsed] = Flow.fromFunction(countyToByteString)val rowBytes = limitableByteSource(source via flowCountyToByteString)val request = HttpRequest(HttpMethods.POST,uri = s"http://localhost:8011/rows")val data = HttpEntity(ContentTypes.`application/json`,rowBytes)def uploadRows(request: HttpRequest, dataEntity: RequestEntity) = {val futResp = Http(sys).singleRequest(request.copy(entity = dataEntity))futResp.andThen {case Success(r@HttpResponse(StatusCodes.OK, _, entity, _)) =>entity.dataBytes.map(_.utf8String).runForeach(println)case Success(r@HttpResponse(code, _, _, _)) =>println(s"Upload request failed, response code: $code")r.discardEntityBytes()case Success(_) => println("Unable to Upload file!")case Failure(err) => println(s"Upload failed: ${err.getMessage}")}}uploadRows(request,data)scala.io.StdIn.readLine()sys.terminate()}





这篇关于Akka(41): Http:DBTable-rows streaming - 数据库表行交换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887209

相关文章

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

MySQL MHA集群详解(数据库高可用)

《MySQLMHA集群详解(数据库高可用)》MHA(MasterHighAvailability)是开源MySQL高可用管理工具,用于自动故障检测与转移,支持异步或半同步复制的MySQL主从架构,本... 目录mysql 高可用方案:MHA 详解与实战1. MHA 简介2. MHA 的组件组成(1)MHA

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

通过DBeaver连接GaussDB数据库的实战案例

《通过DBeaver连接GaussDB数据库的实战案例》DBeaver是一个通用的数据库客户端,可以通过配置不同驱动连接各种不同的数据库,:本文主要介绍通过DBeaver连接GaussDB数据库的... 目录​一、前置条件​二、连接步骤​三、常见问题与解决方案​1. 驱动未找到​2. 连接超时​3. 权限不

MySQL数据库读写分离与负载均衡的实现逻辑

《MySQL数据库读写分离与负载均衡的实现逻辑》读写分离与负载均衡是数据库优化的关键策略,读写分离的核心是将数据库的读操作与写操作分离,本文给大家介绍MySQL数据库读写分离与负载均衡的实现方式,感兴... 目录读写分离与负载均衡的核心概念与目的读写分离的必要性与实现逻辑读写分离的实现方式及优缺点读负载均衡

Go语言中如何进行数据库查询操作

《Go语言中如何进行数据库查询操作》在Go语言中,与数据库交互通常通过使用数据库驱动来实现,Go语言支持多种数据库,如MySQL、PostgreSQL、SQLite等,每种数据库都有其对应的官方或第三... 查询函数QueryRow和Query详细对比特性QueryRowQuery返回值数量1个:*sql

Mysql数据库聚簇索引与非聚簇索引举例详解

《Mysql数据库聚簇索引与非聚簇索引举例详解》在MySQL中聚簇索引和非聚簇索引是两种常见的索引结构,它们的主要区别在于数据的存储方式和索引的组织方式,:本文主要介绍Mysql数据库聚簇索引与非... 目录前言一、核心概念与本质区别二、聚簇索引(Clustered Index)1. 实现原理(以 Inno

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳