Python计算多个表格中多列数据的平均值与标准差并导出为新的Excel文件

本文主要是介绍Python计算多个表格中多列数据的平均值与标准差并导出为新的Excel文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文介绍基于Python语言,对一个或多个表格文件多列数据分别计算平均值标准差,随后将多列数据对应的这2个数据结果导出为新的表格文件的方法。

  首先,来看一下本文的需求。现有2.csv格式的表格文件,其每1列表示1个变量,每1行则表示1个样本;其中1个表格文件如下图所示。

  我们现在需要分别对这2个表格文件执行如下操作:计算出其中部分变量(部分列)在所有样本(所有行)中的平均值标准差数据,然后将这些数据结果导出到一个新的.csv格式文件中。

  需求也很简单。明确了需求,接下来就可以开始代码的撰写;本文所用代码如下。

# -*- coding: utf-8 -*-
"""
Created on Sun Mar 10 17:59:23 2024@author: fkxxgis
"""import pandas as pddata = pd.read_csv(r"F:\Data_Reflectance_Rec\Train_data\Train_Model_0715_Main_Over_B_New.csv")
data_nir = pd.read_csv(r"F:\Data_Reflectance_Rec\Train_data\Train_Model_0715_Main_Over_NIR_New.csv")column_need = ["blue", "green", "red", "inf", "NDVI", "NDVI_dif", "days", "sola", "temp", "prec", "soil", "blue_h", "green_h", "red_h", "inf_h", "ndvi_h", "blue_h_dif", "green_h_dif", "red_h_dif", "inf_h_dif", "ndvi_h_dif"]mean_value = data[column_need].mean()
std_value = data[column_need].std()
mean_value_nir = data_nir[column_need].mean()
std_value_nir = data_nir[column_need].std()data_new = pd.DataFrame({"mean_RGB": mean_value, "std_RGB": std_value, "mean_NIR": mean_value_nir, "std_NIR": std_value_nir})data_new.to_csv(r"F:\Data_Reflectance_Rec\Train_data\mean_std.csv", index = True)

  上述代码具体含义如下。

  首先,使用pandas库导入了pd模块。

  其次,使用pd.read_csv()函数从2.csv格式表格文件中读取数据。其中,因为本文需要读取的是2个文件,所以分别用data变量与data_nir变量读取这2个不同路径的表格文件。

  接下来,定义了一个column_need列表,其中包含了需要计算平均值和标准差的列名。

  随后,使用mean()函数和std()函数分别计算了datadata_nir中指定列的平均值和标准差,并将结果分别赋值给mean_valuestd_valuemean_value_nirstd_value_nir变量。

  然后,使用pd.DataFrame创建了一个新的数据框data_new,其中包含了4列数据:mean_RGB列存储了data中计算得到的平均值std_RGB列存储了data中计算得到的的标准差mean_NIR列存储了data_nir中计算得到的平均值std_NIR列存储了data_nir中计算得到的标准差

  最后,使用to_csv()函数将data_new保存到文件路径为mean_std.csv.csv格式文件中,设置index=True表示将索引列也保存到文件中。

  运行上述代码,即可在结果文件夹中找到对应的结果.csv格式文件;如下图所示,其已经是我们需要的形式了——每1列表示1种对应的结果,每1行表示1种变量。

  至此,大功告成。

欢迎关注:疯狂学习GIS

这篇关于Python计算多个表格中多列数据的平均值与标准差并导出为新的Excel文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887126

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优