针对图/网络性能评估函数【networkx库】

2024-04-09 02:36

本文主要是介绍针对图/网络性能评估函数【networkx库】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

networkx 是一个 Python 库,用于创建、操作和研究复杂网络的结构和动态过程,它提供了许多内置函数来评估图的各种性能。

常用函数介绍

1.平均最短路径长度 (average_shortest_path_length):计算图中所有节点对之间的平均最短路径长度。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
average_shortest_path = nx.average_shortest_path_length(G)
print("Average shortest path length:", average_shortest_path)

2.度中心性 (degree_centrality):计算每个节点的度中心性,即节点的度与图中最大可能度的比例。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
degree_centralities = nx.degree_centrality(G)
print("Degree centralities:", degree_centralities)

3.介数中心性 (betweenness_centrality):计算每个节点的介数中心性,衡量节点在图中的控制能力。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
betweenness_centralities = nx.betweenness_centrality(G)
print("Betweenness centralities:", betweenness_centralities)

4.接近度中心性 (closeness_centrality):计算每个节点的接近度中心性,反映节点到达其他节点的平均距离。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
closeness_centralities = nx.closeness_centrality(G)
print("Closeness centralities:", closeness_centralities)

5.连通分量 (connected_components):查找图中的连通分量,即图中由节点和边组成的连通子图。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
connected_components = nx.connected_components(G)
print("Connected components:", list(connected_components))

6.图的直径 (diameter):计算图的直径,即图中最长最短路径的长度。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
diameter = nx.diameter(G)
print("Diameter of the graph:", diameter)

7.平均聚类系数 (average_clustering):计算图中所有节点的平均聚类系数,表示图中节点之间的密集连接程度。

import networkx as nxG = nx.Graph()
# 添加节点和边到图 G
# ...
average_clustering_coefficient = nx.average_clustering(G)
print("Average clustering coefficient:", average_clustering_coefficient)

8.度分布 (degree_histogram):计算图中节点的度分布,即每个度值对应的节点数量。

import networkx as nx
import matplotlib.pyplot as pltG = nx.Graph()
# 添加节点和边到图 G
# ...
degree_histogram = nx.degree_histogram(G)
plt.bar(range(len(degree_histogram)), degree_histogram)
plt.xlabel("Degree")
plt.ylabel("Number of Nodes")
plt.title("Degree Distribution")
plt.show()

未完待续…

这篇关于针对图/网络性能评估函数【networkx库】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886984

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st