C++ 圆周率的几种求解方法

2024-04-08 20:36

本文主要是介绍C++ 圆周率的几种求解方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号:编程驿站

圆周率的常见几种求解算法,包括但不仅仅包含特卡洛模拟、割圆法和公式法。本文讲解这几种算法的实现流程。

1. 蒙特卡洛模拟算法

假设有一个半径为1的圆,如图所示。先绘制一个半径为1的圆。则图中阴影部分(1/4圆)的面积就等于π/4

1.png

再绘制出一个正方形,可以看出它的面积是 1 。通过这种方式,就能够获取到正方形面积和阴影部分面积的一个比例。如此可得到正方形和阴影面积的比例关系1:π/4。这是通过数学上提供的计算面积的公式,得到的一个比例。

另外的话呢,我们可以生成很多点。然后把它们随机、均均匀的把平铺到正方形里面去。这时候呢,我们可以认为这些点呢模拟出正方形的面积。另外我们需要计算出有哪些点落在了阴影部分。这种方式也能够获取到正方形和阴影部分面积的比例。这个比例和我们前面通过数学公式所求出的比例呢是一种恒等于的关系,我们利用这种恒等关系,就能够很轻松的获取到这个圆周率。

下面我们看一下这个代码应该如何实现?

第一步利用随机函数产生很多点(横坐标的值x和纵坐标的值y都在0~1之间)随机、均匀散满在正方形内。且统计出散落在阴影部分点的数量。获取正方形内点的数量和阴影部分点的数量的比例。显然,此比例和前面通过公式计算两者面积的比例具有恒等于关系。通过此关系便可计算出圆周率。

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
using namespace std;
int main(int argc, char** argv) {//随机种子srand( time(0) );double num=10000000;double circle=0;//random 伪随机数(算法)for(int i=1; i<num; i++) {double x= rand() / double(RAND_MAX);double y=rand() / double(RAND_MAX);if( x*x+y*y <=1 ) {circle++;}}double pi=4*circle /  num;cout<<pi;return 0;
}

2. 割圆法

例如,假设一个半径为1的圆,在圆中有一个内接6边形,如图所示。该内接六边形的弦长y=1,周长d=6*y1,则π的近似值pi=6*y/2=3
可以通过内接 12,24,48……正多边形,求出精度更高的圆周率。

如下图,把圆切割成六边形:根据等边三角形的特征,可知,六边形的边长y=1

2.png

如下图,把圆切割成正12边形。

3.png

因为ABD为直角三角形,可得AB2=AD2-BD2=1-1/4=3/4,所以AB=sqrt(3/4)

又因为BCD也为直角三角形,可得y2=BD2+CB2=1/4+(1-AB)2=1/4+1-2*sqrt(3/4)+3/4=2-sqrt(3)

所以:pi=6*sqrt( 2-sqrt(3) )

#include <bits/stdc++.h>
using namespace std;
int main () {int i,n,s=6;double y=1;cout<<"输入切割次数:"<<endl;cin>>n;for(int i=0; i<n; i++) {printf("第%d次切割,为%d边,PI=%.24f\n",i,s,s/2*sqrt(y));s*=2;//弦长的平方值 y=2-sqrt(4-y); }return 0;
}

3. 公式法

求解圆周率的公式常见的有如下三个:

3.1 公式一

4.png

本质是累乘问题,关键是找到参与累乘数字的之间的规律。这里有两种规律。

  • 通过观察可以发现,后一个分数的分母是前一个分数的分子加1,后一个分数的分子是前一个分数的分母加一。
    8.png

​ 代码实现

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1;int n;cin>>n;double fm=1,fz=2;for(int i=0;i<n;i++){res*=fz/fm;//先存储前一个分数的分母int t=fm;//后一个分数的分母是前一个分数的分子加1fm= fz+1;//后一个分数的分子是前一个分数的分母加1fz=t+1;	}cout<<res*2;return 0;
}
  • 给参与累乘的数字编号,会发现当累乘数字的编号为偶数时,改变分数的分母为下一个奇数,当编号为奇数时,改变分子为下一个偶数。

9.png

​ 代码实现:

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1;int n;cin>>n;double fm=1,fz=2;res*=fz/fm;for(int i=2; i<=n; i++) {if( i%2==0 )fm+=2;else fz+=2;res*=fz/fm;}cout<<res*2;return 0;
}

3.2 公式二

5.png

我们可以把它当成一个累加的问题,但是在累加的时候,又包括有这个累乘的算法,这里我们有两种思考方案。

第一种方式,我们就把相乘当成雷加的一个内嵌的运算式子,就是说用循环嵌套。

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1;int n;cin>>n;for(int i=1;i<=n;i++){double lc=1;double fm=3;for( int j=1;j<=i;j++ ){lc*=j/fm;fm+=2;}res+=lc;}cout<<res*2;return 0;
}

第二种方案,本质上还是一个累加的问题,累加的时候,它要获得一个累乘的效果。一个累乘的值在不停的变化,所以这里我就会声明一个变量。变量用来存储累乘的结果。

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1,lc=1;int n;cin>>n;double fm=3; //分母for(int i=1;i<=n;i++){ //i 分子 lc*=1/fm;res+=lc;fm+=2;}cout<<res*2;return 0;
}

3.3 公式三

7.png

此题也有两种方案,使用二层循环和一层循环。

  • 二层循环。外层循环实现累乘问题,内层循环每次重次计算分母。
#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=2;int n;cin>>n;for(int i=1;i<=n;i++){double fm=sqrt(2);for( int j=1;j<i;j++){fm=sqrt( 2+fm );}res*=2/fm;}cout<<res;return 0;
}
  • 一层循环。下一次的分母为2减去上一次分母,然后开平方根。
#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=2;int n;cin>>n;double fm=sqrt(2);for(int i=0;i<n;i++){res*=2/fm;fm=sqrt( 2+fm );}cout<<res;	return 0;
}

这篇关于C++ 圆周率的几种求解方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886409

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)