Windows编译运行yolov9-bytetrack-tensorrt (C++)

2024-04-08 18:52

本文主要是介绍Windows编译运行yolov9-bytetrack-tensorrt (C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Windows编译运行yolov9-bytetrack-tensorrt(C++)

  • 1 基础环境
  • 2 编译yolov9-bytetrack-tensorrt
    • (1)下载yolov9-bytetrack-tensorrt源码
    • (2)修改CMakeLists.txt
    • (3)CMake编译
  • 3 yolov9模型转换成TensorRT模型
    • (1)下载yolov9
    • (2)下载预训练模型
    • (3)将模型转换成onnx格式
    • (4)将onnx模型转换成tensorrt格式
  • 4 执行程序
  • 参考文章

1 基础环境

TensorRT 8.6
CUDA 11.8
Eigen 3.3
OpenCV 4.8(CUDA 11.8编译)
Visual Studio 2017 C++17编译器
CMake 3.21.4
Windows 10

2 编译yolov9-bytetrack-tensorrt

(1)下载yolov9-bytetrack-tensorrt源码

项目地址spacewalk01/yolov9-bytetrack-tensorrt

(2)修改CMakeLists.txt

设置opencv、Eigen和tensorrt路径。

# Find Eigen library
#find_package(Eigen3 3.3 REQUIRED)
include_directories(D:/Librarys/eigen-3.3.3)# Find and include OpenCV
set(OpenCV_DIR "D:/Program Files/opencv/opencv-4.8.0/install")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})# Set TensorRT path if not set in environment variables
set(TENSORRT_DIR "D:/Librarys/TensorRT-8.6.1.6")

(3)CMake编译

使用VS2017编译器C++17,CUDA用v11.8。
在这里插入图片描述

注意:cuda默认会找环境变量中CUDA_PATH对应的版本,如果opencv是cuda编译的,该cuda版本要一致,避免出错。在这里插入图片描述

3 yolov9模型转换成TensorRT模型

(1)下载yolov9

创建conda环境,下载yolov9代码,并执行以下命令,详细参考前文yolov9训练自己的数据。

$ git clone https://github.com/WongKinYiu/yolov9.git
$ cd yolov9
$ conda create --name yolov9 python=3.8
$ pip install -r requirement.txt

(2)下载预训练模型

yolov9-c.pt

(3)将模型转换成onnx格式

a. 将TensorRT-YOLOv9目录下的 reparameterize.py放到yolov9目录下,在yolov9目录下执行以下命令,也可以直接官网下载转换好的模型yolov9-c-converted.pt。

python reparameterize.py yolov9-c.pt yolov9-c-converted.pt

b. 导出onnx模型,在yolov9目录下执行以下命令,生成yolov9-c-converted.onnx

python export.py --weights yolov9-c-converted.pt --include onnx

(4)将onnx模型转换成tensorrt格式

D:\Librarys\TensorRT-8.6.1.6\bin目录下执行以下命令:

trtexec.exe --onnx=yolov9-c-converted.onnx --explicitBatch --saveEngine=yolov9-c.engine --fp16

4 执行程序

显卡GTX1080,推理时间约50ms。
在这里插入图片描述

参考文章

spacewalk01/yolov9-bytetrack-tensorrt

这篇关于Windows编译运行yolov9-bytetrack-tensorrt (C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886276

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

C++字符串提取和分割的多种方法

《C++字符串提取和分割的多种方法》在C++编程中,字符串处理是一个常见的任务,尤其是在需要从字符串中提取特定数据时,本文将详细探讨如何使用C++标准库中的工具来提取和分割字符串,并分析不同方法的适用... 目录1. 字符串提取的基本方法1.1 使用 std::istringstream 和 >> 操作符示

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Windows Server服务器上配置FileZilla后,FTP连接不上?

《WindowsServer服务器上配置FileZilla后,FTP连接不上?》WindowsServer服务器上配置FileZilla后,FTP连接错误和操作超时的问题,应该如何解决?首先,通过... 目录在Windohttp://www.chinasem.cnws防火墙开启的情况下,遇到的错误如下:无法与

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程