【单源最短路 图论】882. 细分图中的可到达节点

2024-04-08 08:04

本文主要是介绍【单源最短路 图论】882. 细分图中的可到达节点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

单源最短路 图论

LeetCode 882. 细分图中的可到达节点

给你一个无向图(原始图),图中有 n 个节点,编号从 0 到 n - 1 。你决定将图中的每条边 细分 为一条节点链,每条边之间的新节点数各不相同。
图用由边组成的二维数组 edges 表示,其中 edges[i] = [ui, vi, cnti] 表示原始图中节点 ui 和 vi 之间存在一条边,cnti 是将边 细分 后的新节点总数。注意,cnti == 0 表示边不可细分。
要 细分 边 [ui, vi] ,需要将其替换为 (cnti + 1) 条新边,和 cnti 个新节点。新节点为 x1, x2, …, xcnti ,新边为 [ui, x1], [x1, x2], [x2, x3], …, [xcnti-1, xcnti], [xcnti, vi] 。
现在得到一个 新的细分图 ,请你计算从节点 0 出发,可以到达多少个节点?如果节点间距离是 maxMoves 或更少,则视为 可以到达 。
给你原始图和 maxMoves ,返回 新的细分图中从节点 0 出发 可到达的节点数 。

示例 1:
在这里插入图片描述

输入:edges = [[0,1,10],[0,2,1],[1,2,2]], maxMoves = 6, n = 3
输出:13
解释:边的细分情况如上图所示。
可以到达的节点已经用黄色标注出来。
示例 2:

输入:edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], maxMoves = 10, n = 4
输出:23
示例 3:

输入:edges = [[1,2,4],[1,4,5],[1,3,1],[2,3,4],[3,4,5]], maxMoves = 17, n = 5
输出:1
解释:节点 0 与图的其余部分没有连通,所以只有节点 0 可以到达。

提示:

0 <= edges.length <= min(n * (n - 1) / 2, 104)
edges[i].length == 3
0 <= ui < vi < n
图中 不存在平行边
0 <= cnti <= 104
0 <= maxMoves <= 109
1 <= n <= 3000

单源最短路

朴素单源最短路的时间复杂度是:O(nn),本文是就是:O(9e6),很可能超时。
堆优化单源最短路的时间复杂度:O(边数),边数不超过104
节点分两种:原始节点、细分节点。
原始节点到0的距离 <= maxMoves,则能到达。
细分点:枚举各边的两个端点,如果端点能到达,且距离为dis,则通过此端点能够到达 maxMoves - dis 个细分点。
同一条边的两个端点到达的细分点需要去重。

代码

核心代码

//堆(优先队列)优化迪杰斯特拉算法 狄克斯特拉(Dijkstra)算法详解
typedef pair<long long, int> PAIRLLI;
class  CHeapDis
{
public:CHeapDis(int n,long long llEmpty = LLONG_MAX/10):m_llEmpty(llEmpty){m_vDis.assign(n, m_llEmpty);}void Cal(int start, const vector<vector<pair<int, int>>>& vNeiB){std::priority_queue<PAIRLLI, vector<PAIRLLI>, greater<PAIRLLI>> minHeap;minHeap.emplace(0, start);while (minHeap.size()){const long long llDist = minHeap.top().first;const int iCur = minHeap.top().second;minHeap.pop();if (m_llEmpty != m_vDis[iCur]){continue;}m_vDis[iCur] = llDist;for (const auto& it : vNeiB[iCur]){minHeap.emplace(llDist + it.second, it.first);}}}vector<long long> m_vDis;const long long m_llEmpty;
};class Solution {
public:int reachableNodes(vector<vector<int>>& edges, int maxMoves, int n) {vector<vector<pair<int, int>>> vNeiBo(n);for (const auto& v : edges) {vNeiBo[v[0]].emplace_back(std::make_pair( v[1],v[2]+1 ));vNeiBo[v[1]].emplace_back(std::make_pair(v[0], v[2] + 1));}CHeapDis dis(n);dis.Cal(0, vNeiBo);int iRet = 0;for (int i = 0; i < n; i++) {iRet += (dis.m_vDis[i] <= maxMoves);}for (const auto& v : edges) {int i0 = (int)max(0LL, maxMoves - dis.m_vDis[v[0]]);int i1 = (int)max(0LL, maxMoves - dis.m_vDis[v[1]]);iRet += min(v[2], i0 + i1);}return iRet;}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<int>> edges;int maxMoves, n;{edges = { {1,2,4},{1,4,5},{1,3,1},{2,3,4},{3,4,5} }, maxMoves = 17, n = 5;auto res = Solution().reachableNodes(edges, maxMoves, n);Assert(1, res);}{edges = { {0,1,10},{0,2,1},{1,2,2} }, maxMoves = 6, n = 3;auto res = Solution().reachableNodes(edges, maxMoves, n);Assert(13, res);}{edges = { {0,1,4},{1,2,6},{0,2,8},{1,3,1} }, maxMoves = 10, n = 4;auto res = Solution().reachableNodes(edges, maxMoves, n);Assert(23, res);}//CConsole::Out(res);
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【单源最短路 图论】882. 细分图中的可到达节点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/885016

相关文章

chart 完成拓扑图单节点拖拽不影响其他节点位置

就是做这种的功能,箭头原本是可以动态重复移动的,但不知道哪里问题导致没箭头了,然后补了个edgeSymbol: ['','arrow'], 字段,才增加了箭头。 拖拽某个节点,只有关联到的线条会跟着变动其他的节点位置不变。 参考 https://gallery.echartsjs.com/editor.html?c=x8Fgri22P9 https://echarts.baidu.com/exa

(13)DroneCAN 适配器节点(一)

文章目录 前言 1 特点 2 固件  3 ArduPilot固件DroneCAN设置 4 DroneCAN适配器节点 前言 这些节点允许现有的 ArduPilot 支持的外围设备作为 DroneCAN 或 MSP 设备适应 CAN 总线。这也允许扩展自动驾驶仪硬件的功能。如允许 I2C 设备(如罗盘或空速)距离自动驾驶仪 1m 以上,并实现多达 32 个伺服输出通道。

leetcode刷题(36)——24.两交换链表中的节点

给定一个链表,两两交换其中相邻的节点,并返回交换后的链表。 你不能只是单纯的改变节点内部的值,而是需要实际的进行节点交换。 示例: 给定 1->2->3->4, 你应该返回 2->1->4->3 题解: 这个题目有2种解法,一个是比较容易想到的循环求解,另外一个是比较难想到的递归求解 解法1:循环求解 关键点在于设置一个pre节点指向链表的头节点,很多链表题目的技巧都是这样设置一个pre

玩转Web之easyui(二)-----easy ui 异步加载生成树节点(Tree),点击树生成tab(选项卡)

关于easy ui 异步加载生成树及点击树生成选项卡,这里直接给出代码,重点部分代码中均有注释 前台: $('#tree').tree({ url: '../servlet/School_Tree?id=-1', //向后台传送id,获取根节点lines:true,onBeforeExpand:function(node,param){ $('#tree').tree('options'

BFS:解决多源最短路问题

文章目录 什么是多源最短路问题?1.矩阵2.飞地的数量3.地图的最高点4.地图分析总结 什么是多源最短路问题? 多源最短路问题(Multi-Source Shortest Path Problem,MSSP)是图论中的一个经典问题,它的目标是在给定图中找到从多个源点到所有其他顶点的最短路径。这个问题可以视为单源最短路问题(Single-Source Shortest Pa

带你学习Mybatis之mybatis的sql节点

mybatis的sql节点 mybatis的mapper映射文件中的sql节点在初始化时会被解析成MappedStatement对象,其中sql语句会被解析为SqlSource对象,sql语句中定义的动态sql节点、文本节点等则由SqlNode接口的相应实现类表示 SqlSource public interface SqlSource {  BoundSql getBoundSql(Objec

代码随想录leetcode200题之图论

目录 1 介绍2 训练3 参考 1 介绍 本博客用来记录代码随想录leetcode200题之图论相关题目。 2 训练 题目1:98. 所有可达路径 解题思路:有向图,dfs(fa, node)。 C++代码如下, #include <bits/stdc++.h>using namespace std;int n, m;unordered_map<int,vector<

最短路算法总结(dijkstra,flyod,bellmanford,spfa)

总结 d i j k s t r a dijkstra dijkstra h e a p − d i j k s t r a heap-dijkstra heap−dijkstra b e l l m a n f o r d bellmanford bellmanford s p f a spfa spfa f l o y d floyd floyd最短路类型单源单源单源单源全源数据维护 e

kafka 集群 Controller 节点和 zookeeper 集群 leader 节点有何区别联系?

kafka 集群 Controller 节点和 zookeeper 集群 leader 节点有何区别联系? Kafka 集群中的 Controller 节点和 ZooKeeper 集群中的 Leader 节点在角色和功能上有明显的区 别,但它们之间也有一定的联系。以下是它们的详细区别和联系: Kafka 集群中的 Controller 节点 角色和功能: 管理任务: Kafka Con

kafka 管理节点 Controller 角色分析

kafka 管理节点 Controller 角色分析 kafka controller 如何管理分区的创建、状态监测、故障切换、内容复制、如何管控分区副本的状态检测故障切换、数据同步、learder 选举? Kafka Controller 是 Kafka 集群中的一个关键组件,负责管理分区的创建、状态监测、故障切换、内容 复制等任务。它通过 ZooKeeper 协调和管理这些任务,确保 K