开源AI程序员SWE-Agent的实现方法

2024-04-08 02:36

本文主要是介绍开源AI程序员SWE-Agent的实现方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引子

前几天,AI 编程机器人 Devin 引起了热议。传言称:程序员的饭碗就要丢了。这两天,一个类似功能的产品 SWE-Agent 开源,在 SWE-Bench 上实现了与 Devin 类似的效果。下面让我们来看看 AI 程序员的具体实现方法。

2 信息

  • 地址:https://github.com/princeton-nlp/SWE-agent
  • 功能:修复 Github 库 Issue 中的问题。

3 原理

作者提出了:Agent-Computer Interface (ACI) 代理计算机接口。优化了 Agent 与计算机之间的衔接,使LLM 能够访问、查看、编辑和执行代码文件

贡献如下:

  • 添加了编辑时运行命令的 Linter,如果语法不正确,则不允许编辑命令通过。
  • 为 Agent 提供了文件查看器,在每个回合只显示 100 行时,查看器效果最佳。作者构建的查看器支持上下文滚动,并且可以在文件中进行搜索。
  • 为 Agent 提供了专门构建全目录字符串搜索命令,并发现以简洁的方式列出匹配项很重要。因为每次向模型展示每个匹配项反而会给模型带来更大混乱。
  • 当命令的输出为空时,将返回一条消息指出:命令已成功运行,但未产生任何输出。

4 安装使用

PLAINTEXT

1
2
3
4
$ git clone https://github.com/princeton-nlp/SWE-agent
$ cd SWE-agent
$ ./setup.sh # 安装 docker 环境,用于Agent调试程序,image 不到 1G。
# 运行方法详见 README.md

在运行时,将 github issue 地址提供给推理工具,该工具将尝试解决问题。setup.sh 文件创建了一个简单的运行环境,Agent 可以在此修改和调试程序,而不会影响宿主机环境。有关与 docker 的交互,请参见下面的代码分析部分。

5 代码分析

整个项目包含 3500 行 Python 代码和 700 行 Shell 代码。其中核心部分是 sweagent 目录下的 2200 行 Python 代码。每个重要的地方都有 README 文件,非常贴心。

可能是由于代码场景与聊天场景存在明显差异,因此未使用 langchain 等库,并且依赖的库数量较少。上下文和记忆主要是自己实现的。这里主要关注作为“接口”时 Agent 如何与环境进行交互。似乎所有交互都在 sweagent 目录实现。

  • sweagent/evviroment
    • swe_env.py:主要是与 docker 环境交互,以操作 shell 命令为主;flake8 检查代码;好像是用 popen 方式实现了与 docker 内部更为复杂的交互操作。
    • utils.py:操作 docker 的工具函数。
  • sweagent/agent 则是与大模型交互部分
    • agents.py:主调入口,调用编辑器,运行代码的程序,其中 Agent 为核心类。
    • models.py:底层支持 gpt,claude, llama 等多种 LLM。
    • command.py:运行命令。
    • parsing.py:解析 LLM 返回结果。
    • history_processors.py:记录执行历史。

6 观后感

之前对 agent 与系统交互只有个模糊的概念,从 SWE-Agent 代码里可以看到具体的实现方法。

公平地说,GitHub issue 中有些问题并不容易解决,因为涉及到复杂的运行环境和前后操作,以及只能在特定条件下才能复现,而 SWE-Bench 相对简化了这些问题,提供了评测的基线,内眼可见最近 AI 在这个领域进步,进一步证明了大型模型的能力,并指明了未来努力的方向。

不过 GitHub 上那些受欢迎的代码通常适用于各种情况,而大多数程序员每天面对的只是固定环境和较小规模的代码。所以他解决我们日常问题可能也够用了。

从 SWE-Agent 中可以看到,并非一定需要颠覆性改变,而是通过解决关键性问题、进行小改进以及多次尝试所积累的经验方法,加在一起效果就是好。

展望一下:参考 RAG 到 RAG2.0,通过微调模型来优化搜索的方法。后面 Agent 用得多了,大概也会关注通过微调模型让 Agent 更好工作的逻辑。见前文:强化学习+大模型_总结篇;另外,在看 Devin 介绍视频的时候,还看到一些 Devin 连网搜索资料和操作浏览器的功能。最近也有很多人在跟进这方面的研究,估计后面也会成为一个热点。

对于程序员和设计者来说,后面可能也面临角度的转换:可能不只关注如何实现一个完整的系统,更多地关注如何将各种功能包装成高内聚的模块,并且做好接口和文档,以便将其与 Agent 集成到更大的系统中。

这篇关于开源AI程序员SWE-Agent的实现方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884343

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time