代码随想录第32天|455.分发饼干 376. 摆动序列

2024-04-08 00:52

本文主要是介绍代码随想录第32天|455.分发饼干 376. 摆动序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

理论基础

贪心算法核心:选择每一阶段的局部最优,从而达到全局最优。

455.分发饼干

455. 分发饼干 - 力扣(LeetCode)代码随想录 (programmercarl.com)455. 分发饼干 - 力扣(LeetCode)

贪心算法理论基础!_哔哩哔哩_bilibili 

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 231 - 1

局部最优就是把大的饼干尽量喂给大胃口的小孩,这样才不会浪费。

先将饼干和小孩分别排序:

Arrays.sort(s);
Arrays.sort(g);

从大饼干对应大胃口小孩开始匹配:

for(int index = g.length - 1; index >= 0; index--){if(start >= 0 && g[index] <= s[start]){start--;count++;}
}

综合代码:

class Solution {// 思路2:优先考虑胃口,先喂饱大胃口public int findContentChildren(int[] g, int[] s) {Arrays.sort(g);Arrays.sort(s);int count = 0;int start = s.length - 1;// 遍历胃口for (int index = g.length - 1; index >= 0; index--) {if(start >= 0 && g[index] <= s[start]) {start--;count++;}}return count;}
}

376. 摆动序列

376. 摆动序列 - 力扣(LeetCode)

代码随想录 (programmercarl.com)

贪心算法,寻找摆动有细节!| LeetCode:376.摆动序列_哔哩哔哩_bilibili

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

进阶:你能否用 O(n) 时间复杂度完成此题?

局部最优:删掉单调坡上的节点,这个坡度就可以有两个局部峰值。

整体最优:整个序列有最多的局部峰值,从而达到最长的摆动序列。

按照以上的图可以分析出来,不需要删除元素,重点在于统计数组的峰值数量

那什么时候需要统计波动呢?有两种情况

1、prediff(nums[i] - nums[i-1])<0 且 curdiff(nums[i+1] - nums[i])>0

2、prediff(nums[i] - nums[i-1])>0 且 curdiff(nums[i+1] - nums[i])<0

以上情况只适用于i位于非首尾位置的时候。如果i位于首尾,则prediff和curdiff都无法计算,那i位于首尾的时候是什么情况呢?还有平坡的时候是prediff或者curdiff等于0,这时候应该怎么计算呢?

情况一上下坡中有平坡

实际摆长为3,要么删除前面3个2,要么删除后面3个2:
 

 删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。

情况二、i位于数组首尾两端:

当i位于首端的时候,假设数组最前面的数字和i所在的首端的位置相同:
 

 

针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)

代码如下:

class Solution {public int wiggleMaxLength(int[] nums) {// 如果数组长度小于等于1,直接返回数组长度if (nums.length <= 1) {return nums.length;}// 当前差值int curDiff = 0;// 上一个差值int preDiff = 0;// 计数,初始为1,因为序列中至少有一个元素int count = 1;// 遍历数组for (int i = 1; i < nums.length; i++) {// 计算当前差值curDiff = nums[i] - nums[i - 1];// 如果当前差值和上一个差值为一正一负,或者等于0(初始时的preDiff)if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {// 计数加1count++;// 更新上一个差值preDiff = curDiff;}}// 返回计数,即摆动子序列的长度return count;}
}

这篇关于代码随想录第32天|455.分发饼干 376. 摆动序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884145

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...