[NSSCTF 2022 Spring Recruit]rrrsssaaa(小明文攻击)

2024-04-07 21:36

本文主要是介绍[NSSCTF 2022 Spring Recruit]rrrsssaaa(小明文攻击),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RSA小明文攻击:在RSA中e也称为加密指数。由于e是可以随意选取的,选取小一点的e可以缩短加密时间,但是选取不当的话就会造成安全为题。

小明文攻击一般有如下两种情况:

        一:(明文加密后小于n)当e=3时,如果明文过小,导致明文的三次方仍然小于n,那么通过直接对密文三次开方,即可得到明文。

        二:(明文m加密后大于n,但不是很大)如果加密后的 c 虽然大于 n 但是并不太大,由于pow (m,e) =kn+c,可以暴力枚举k,然后开 e 次方,直到 e 次方可以开尽,解出了正确的 C 为止。

题目:

from Crypto.Util.number import *
import gmpy2
from functools import reduce
from secret import flagp = getPrime(1024)
i = 0
while True:r = p * 5 + iif isPrime(r):i = 0breakelse:i += 1
while True:q = p * 10 + iif isPrime(q):breakelse:i += 1n = p * q * r
e = 65537
c = pow(bytes_to_long(flag.encode()), e, n)
print('c=' + str(c))
print('p3=' + str(pow(p, 3, n)))
print('q3=' + str(pow(q, 3, n)))
print('r3=' + str(pow(r, 3, n)))
# n = 44571911854174527304485400947383944661319242813524818888269963870884859557542264803774212076803157466539443358890313286282067621989609252352994203884813364011659788234277369629312571477760818634118449563652776213438461157699447304292906151410018017960605868035069246651843561595572415595568705784173761441087845248621463389786351743200696279604003824362262237505386409700329605140703782099240992158439201646344692107831931849079888757310523663310273856448713786678014221779214444879454790399990056124051739535141631564534546955444505648933134838799753362350266884682987713823886338789502396879543498267617432600351655901149380496067582237899323865338094444822339890783781705936546257971766978222763417870606459677496796373799679580683317833001077683871698246143179166277232084089913202832193540581401453311842960318036078745448783370048914350299341586452159634173821890439194014264891549345881324015485910286021846721593668473
# c = 11212699652154912414419576042130573737460880175860430868241856564678915039929479534373946033032215673944727767507831028500814261134142245577246925294110977629353584372842303558820509861245550773062016272543030477733653059813274587939179134498599049035104941393508776333632172797303569396612594631646093552388772109708942113683783815011735472088985078464550997064595366458370527490791625688389950370254858619018250060982532954113416688720602160768503752410505420577683484807166966007396618297253478916176712265476128018816694458551219452105277131141962052020824990732525958682439071443399050470856132519918853636638476540689226313542250551212688215822543717035669764276377536087788514506366740244284790716170847347643593400673746020474777085815046098314460862593936684624708574116108322520985637474375038848494466480630236867228454838428542365166285156741433845949358227546683144341695680712263215773807461091898003011630162481
# p3 = 891438237083490546089708018947678893226384856270496377765399277417697191150845296075484241536063149330788867177806265725641352439792185047059884077696267280233195764685547392586251429555216372682368991273055524268769223153988946085858123028200360359212117360701384933036871231911448311911374115683475228820531478240539549424647154342506853356292956506486091063660095505979187297020928573605860329881982122478494944846700224611808246427660214535971723459345029873385956677292979041143593821672034573140001092625650099257402018634684516092489263998517027205660003413512870074652126328536906790020794659204007921147300771594986038917179253827432120018857213350120695302091483756021206199805521083496979628811676116525321724267588515105188480380865374667274442027086789352802613365511142499668793725505110436809024171752137883546327359935102833441492430652019931999144063825010678766130335038975376834579129516127516820037383067
# q3 = 44571911854174527304485400947383944661319242813524818888269963870884859557542264803774212076803157466539443358890313286282067621989609252352994203884813364011659788234277369629312571477760818634118449563652776213438461157699447304292906151410018017960605868035069246651843561595572415595568705784173761440671033435053531971051698504592848580356684103015611323747688216493729331061402058160819388999663041629882482138465124920580049057123360829897432472221079140360215664537272316836767039948368780837985855835419681893347839311156887660438769948501100287062738217966360434291369179859862550767272985972263442512061098317471708987686120577904202391381040801620069987103931326500146536990700234262413595295698193570184681785854277656410199477649697026112650581343325348837547631237627207304757407395388155701341044939408589591213693329516396531103489233367665983149963665364824119870832353269655933102900004362236232825539480774
# r3 = 22285955927087263652242700473691972330659621406762409444134981935442429778771132401887106038401578733269721679445156643141033810994804626176497101942406682005829894117138684814656285738880409317059224781826388106719230578849723652146453075705009008980302934017534623325921780797786207797784352892086880720749202442492937918619992591614713131681306874944356693778359565004415437554407990089293135634916859631279984463829118336826115430997439527110961309956466956650522900331263720500751112297418506140413317489683875995326726992533904683800042127871963320754241310699432792081707870167598822650064976439270556418985242630368723264289700246406905189810458354474959276748887369363592834205660349184660073395182450526542246354364903399132116153732074081050985584216815493617906868615192465631416955706457835185743023758573279838341229835613609332206338401219168119635681832981552328638132500079074010106995297184587143613134093145

分析:

        从题我们看到P3(pow(p,3,n))仍然小于n,由此我们知道P3就是P**3,我们便可以通过函数iroot(P3,3)求出p,继而求出r,q,phi,d,最后求出m

解题脚本:

from gmpy2 import *
from Cryptodome.Util.number import *e = 65537
n = 44571911854174527304485400947383944661319242813524818888269963870884859557542264803774212076803157466539443358890313286282067621989609252352994203884813364011659788234277369629312571477760818634118449563652776213438461157699447304292906151410018017960605868035069246651843561595572415595568705784173761441087845248621463389786351743200696279604003824362262237505386409700329605140703782099240992158439201646344692107831931849079888757310523663310273856448713786678014221779214444879454790399990056124051739535141631564534546955444505648933134838799753362350266884682987713823886338789502396879543498267617432600351655901149380496067582237899323865338094444822339890783781705936546257971766978222763417870606459677496796373799679580683317833001077683871698246143179166277232084089913202832193540581401453311842960318036078745448783370048914350299341586452159634173821890439194014264891549345881324015485910286021846721593668473
c = 11212699652154912414419576042130573737460880175860430868241856564678915039929479534373946033032215673944727767507831028500814261134142245577246925294110977629353584372842303558820509861245550773062016272543030477733653059813274587939179134498599049035104941393508776333632172797303569396612594631646093552388772109708942113683783815011735472088985078464550997064595366458370527490791625688389950370254858619018250060982532954113416688720602160768503752410505420577683484807166966007396618297253478916176712265476128018816694458551219452105277131141962052020824990732525958682439071443399050470856132519918853636638476540689226313542250551212688215822543717035669764276377536087788514506366740244284790716170847347643593400673746020474777085815046098314460862593936684624708574116108322520985637474375038848494466480630236867228454838428542365166285156741433845949358227546683144341695680712263215773807461091898003011630162481
p3 = 891438237083490546089708018947678893226384856270496377765399277417697191150845296075484241536063149330788867177806265725641352439792185047059884077696267280233195764685547392586251429555216372682368991273055524268769223153988946085858123028200360359212117360701384933036871231911448311911374115683475228820531478240539549424647154342506853356292956506486091063660095505979187297020928573605860329881982122478494944846700224611808246427660214535971723459345029873385956677292979041143593821672034573140001092625650099257402018634684516092489263998517027205660003413512870074652126328536906790020794659204007921147300771594986038917179253827432120018857213350120695302091483756021206199805521083496979628811676116525321724267588515105188480380865374667274442027086789352802613365511142499668793725505110436809024171752137883546327359935102833441492430652019931999144063825010678766130335038975376834579129516127516820037383067p = iroot(p3,3)[0]
i = 0
while True:r = p * 5 + iif isPrime(r):i = 0breakelse:i += 1
while True:q = p * 10 + iif isPrime(q):breakelse:i += 1
assert p*q*r==nphi = (q-1)*(p-1)*(r-1)d = invert(e,phi)
m = pow(c,d,n)
print(long_to_bytes(m))

这篇关于[NSSCTF 2022 Spring Recruit]rrrsssaaa(小明文攻击)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883728

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

Java中的密码加密方式

《Java中的密码加密方式》文章介绍了Java中使用MD5算法对密码进行加密的方法,以及如何通过加盐和多重加密来提高密码的安全性,MD5是一种不可逆的哈希算法,适合用于存储密码,因为其输出的摘要长度固... 目录Java的密码加密方式密码加密一般的应用方式是总结Java的密码加密方式密码加密【这里采用的

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b