【算法 | 背包专题】01背包(状态定义+状态转移+解题流程+题单)

2024-04-07 12:12

本文主要是介绍【算法 | 背包专题】01背包(状态定义+状态转移+解题流程+题单),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

什么是背包问题?

背包问题是一种经典的组合优化问题,它的核心思想是在有限的资源(如背包的容量)下,如何选择物品以达到某种目标(如最大价值)的最优解。

背包问题可以分为几种类型,其中最常见的有:

  1. 0/1背包问题:每个物品只能选择放入或不放入背包,不能分割。
  2. 完全背包问题:每种物品可以选择无限个,但每件物品只能选择一次。
  3. 多重背包问题:每种物品可以选择多个,且没有数量限制。

解决方法也有很多,比如动态规划,回溯搜索、分支限界,贪心等。

背包问题在实际生活中有很多应用,如资源分配、项目投资组合、货物装载、课程安排等。通过解决背包问题,我们可以在有限的资源下做出最优的决策。

本节我们就来看01背包问题。

问题描述

01背包问题的描述如下:

  • 现在,我们有一个背包,它有一个固定的承载重量限制 W(背包容量有限)。
  • 同时,我们有一组物品,每个物品都有自己的重量weight[i]和价值value[i]
  • 我们需要从这组物品中选择一些物品放入背包,并且每件物品只能用一次
  • 问:在不超过背包承载重量的前提下,放入背包的物品总价值最大是多少

在01背包中,每个物品最多只能用一次。

问题求解

暴力

在这个经典的 01背包问题中,对于我们的决策,每一件物品只有两个状态:

  • 不选

使用回溯法,我们可以搜索出所有情况,但时间复杂度是 O ( 2 n ) O(2^n) O(2n) n n n表示物品数量),因此暴力的解法是通不过的,需要进一步优化。

对于01背包问题,最常用的求解方法是动态规划

dp表的含义

使用动态规划的解法,需要定义状态(明确dp表的含义)和状态转移方程,将问题分解为子问题,然后通过迭代的方式,从小问题开始,逐步解决大问题。

我们来看,在01背包问题中,状态是如何定义的:

  • dp[i][j]:在前i个物品中选取若干个,使得总重量不超过j的情况下,能够获得的最大价值。

明确好dp表的含义后,我们就可以进行状态转移的讨论以及编码。

状态转移

对于每个物品i以及当前的背包容量j,我们考虑两种情况(选或不选):

  • 如果不选取i个物品:
    • 那么背包中物品的总价值就是在前i-1个物品中选取若干个,使得总重量不超过j的情况下,能够获得的最大价值,
    • dp[i][j] = dp[i - 1][j]
  • 如果选取i个物品:
    • 背包中物品的总价值就是在前i-1个物品中选取若干个,使得总重量不超过j-weight[i]的情况下,能够获得的最大价值,再加上第i个物品的价值,
    • dp[i][j] = dp[i - 1][j - weight[i]] + value[i]

我们对每个物品的每种可能性进行考虑,从而找出在总重量不超过背包容量的前提下,能够获得的最大价值。这就是01背包问题的解题思路。

解题流程

定义好状态,以及转移方程后,我们就可以开始推了。从第1个物品开始,对于每个物品,遍历所有的背包容量,根据状态转移方程更新dp表。最后,dp[n][t]就是最大价值。

在使用动态规划时,初始化操作是很关键的一步。对于dp[0][j](没有物品时),无论背包容量是多少,最大价值都是0,因此初始化就都是0。

代码如下:

/*** 使用动态规划解决01背包问题* @param weight 物品的重量数组* @param value 物品的价值数组* @param W 背包的总容量* @return 能够获得的最大价值*/
public static int compute(int[] weight, int[] value, int W) {int n = value.length;	// 有n件物品// dp[i][j]表示在前i个物品中选取若干个,使得总重量不超过j的情况下,能够获得的最大价值int[][] dp = new int[n+1][W+1];// 遍历每一个物品for(int i = 1; i<=n; i++) {// 遍历每一种背包容量for(int j = 0; j<=W; j++) {// 不选取第i个物品dp[i][j] = dp[i-1][j];// 如果背包的剩余容量大于等于当前物品的重量,考虑选取第i个物品if(j >= weight[i]) {// 选取第i个物品,更新最大价值dp[i][j] = Math.max(dp[i][j], dp[i-1][j-weight[i]] + value[i]);}}}// 返回在前n个物品中选取若干个,使得总重量不超过W的情况下,能够获得的最大价值return dp[n][W];
}

空间压缩

在上述代码中,我们可以看到,每次更新dp[i][j]时,我们只用到了上一行的数据,即dp[i-1][j]dp[i-1][j-weight[i]]。这意味着我们并不需要保存所有的dp[i][j],只需要保存上一行的数据就足够了,因此,我们可以将二维dp表改进为一维,俗称空间压缩。

空间压缩的思路是,我们使用一个一维数组dp[j]来代替二维数组dp[i][j]dp[j]表示在当前考虑的物品中选取若干个,使得总重量不超过j的情况下,能够获得的最大价值。

需要注意的是,我们每次在更新dp[i][j]时,总是用到了上一行中的dp[i-1][j]dp[i-1][j-weight[i]],在二维表中可以形象理解为,我所处的位置,依赖于上方的格子,以及左上方的格子。因此,进行空间压缩更新dp[j]时,我们需要从后往前更新dp[j],这样可以逐渐更新当前的格子。

如果我们从前往后更新,那么在计算dp[j]时,dp[j-weights[i]]可能已经被更新过了,它表示的是当前行的状态,而不是上一行的状态。而我们需要的是上一行的状态,因此我们必须从后往前更新。

下面是空间压缩后的代码:

/*** 使用动态规划解决01背包问题(空间压缩版本)* @param weight 物品的重量数组* @param value 物品的价值数组* @param W 背包的总容量* @return 能够获得的最大价值*/
public static int compute(int[] weight, int[] value, int W) {int n = value.length;	// 有n件物品// dp[j]表示在当前考虑的物品中选取若干个,使得总重量不超过j的情况下,能够获得的最大价值int[] dp = new int[W+1];// 遍历每一个物品for(int i = 1; i<=n; i++) {// 从后往前更新dp[j]for(int j = W; j>=weight[i]; j--) {// 选取第i个物品,更新最大价值dp[j] = Math.max(dp[j], dp[j-weight[i]] + value[i]);}}// 返回在所有物品中选取若干个,使得总重量不超过W的情况下,能够获得的最大价值return dp[W];
}

这段代码的时间复杂度仍然是 O ( n ∗ W ) O(n*W) O(nW),但是空间复杂度降低到了 O ( W ) O(W) O(W),其中 n n n是物品的数量, W W W是背包的容量。

注意,我们后面会经常使用空间压缩的版本,因此需要吃透这份代码。

模板题 | 采药

我们来看一道洛谷上的模板题。

测试链接:P1048 [NOIP2005 普及组] 采药

题目描述

辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入格式

第一行有 2 2 2 个整数 T T T 1 ≤ T ≤ 1000 1 \le T \le 1000 1T1000)和 M M M 1 ≤ M ≤ 100 1 \le M \le 100 1M100),用一个空格隔开, T T T 代表总共能够用来采药的时间, M M M 代表山洞里的草药的数目。

接下来的 M M M 行每行包括两个在 1 1 1 100 100 100 之间(包括 1 1 1 100 100 100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式

输出在规定的时间内可以采到的草药的最大总价值。

样例

样例输入

70 3
71 100
69 1
1 2

样例输出

3

提示

【数据范围】

  • 对于 30 % 30\% 30% 的数据, M ≤ 10 M \le 10 M10
  • 对于全部的数据, M ≤ 100 M \le 100 M100

【题目来源】

NOIP 2005 普及组第三题

解题

这道题就是标准的01背包问题,每种草药只能采摘一次,也就是说每种物品只能选择一次或者不选择,不能选择多次。

我们定义dp[i][j]为在前i种草药中选取若干种,使得总时间不超过j的情况下,能够获得的最大价值。对于第i种草药,我们可以选择采摘,也可以选择不采摘。如果我们选择采摘,那么我们需要在剩余的时间j-weight[i]中选择前i-1种草药,使得总价值最大;如果我们选择不采摘,那么我们需要在时间j中选择前i-1种草药,使得总价值最大。

我们取这两种情况的最大值,就是dp[i][j]的值。

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main {static int N = 101; // 草药的最大数量static int W = 1001;// 总时间的最大值static int[] weight = new int[N]; // 每种草药的采摘时间static int[] value = new int[N]; // 每种草药的采摘价值static int n, w; // 分别表示草药的数量和总时间public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {w = (int) in.nval;in.nextToken();n = (int) in.nval;for (int i = 1; i <= n; i++) {in.nextToken();weight[i] = (int) in.nval;in.nextToken();value[i] = (int) in.nval;}out.println(compute2());}out.flush();out.close();br.close();}// 经典解法public static int compute1() {// dp[i][j]表示在前i个草药中选取若干个,使得总时间不超过j的情况下,能够获得的最大价值int[][] dp = new int[n + 1][w + 1];for (int i = 1; i <= n; i++) {for (int j = 0; j <= w; j++) {// 不要i号草药dp[i][j] = dp[i - 1][j];if (j - weight[i] >= 0) {// 要i号草药dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - weight[i]] + value[i]);}}}return dp[n][w];}// 空间压缩版本public static int compute2() { int[] dp = new int[w + 1];for (int i = 1; i <= n; i++) {for (int j = w; j >= weight[i]; j--) {dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);}}return dp[w];}}

力扣题单

链接题解
2915. 和为目标值的最长子序列的长度题解
416. 分割等和子集题解
494. 目标和题解
2787. 将一个数字表示成幂的和的方案数题解
1049. 最后一块石头的重量 II题解

这篇关于【算法 | 背包专题】01背包(状态定义+状态转移+解题流程+题单)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/882573

相关文章

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

Nginx、Tomcat等项目部署问题以及解决流程

《Nginx、Tomcat等项目部署问题以及解决流程》本文总结了项目部署中常见的four类问题及其解决方法:Nginx未按预期显示结果、端口未开启、日志分析的重要性以及开发环境与生产环境运行结果不一致... 目录前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的

Nacos客户端本地缓存和故障转移方式

《Nacos客户端本地缓存和故障转移方式》Nacos客户端在从Server获得服务时,若出现故障,会通过ServiceInfoHolder和FailoverReactor进行故障转移,ServiceI... 目录1. ServiceInfoHolder本地缓存目录2. FailoverReactorinit

Security OAuth2 单点登录流程

单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性。当拥有这项属性时,当用户登录时,就可以获取所有系统的访问权限,不用对每个单一系统都逐一登录。这项功能通常是以轻型目录访问协议(LDAP)来实现,在服务器上会将用户信息存储到LDAP数据库中。相同的,单一注销(single sign-off)就是指

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica