【六 (2)机器学习-EDA探索性数据分析模板】

2024-04-07 06:52

本文主要是介绍【六 (2)机器学习-EDA探索性数据分析模板】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 文章导航
    • 一、EDA:
    • 二、导入类库
    • 三、导入数据
    • 四、查看数据类型和缺失情况
    • 五、确认目标变量和ID
    • 六、查看目标变量分布情况
    • 七、特征变量按照数据类型分成定量变量和定性变量
    • 八、查看定量变量分布情况
    • 九、查看定量变量的离散程度
    • 十、查看定量变量与目标变量关系
    • 十一、查看定性变量分布情况
    • 十二、查看定性变量与目标变量关系
    • 十三、查看定性变量对目标变量的显著性影响
    • 十四、查看定性变量和目标变量的spearman相关系数
    • 十五、查看定量变量与目标变量相关性
    • 十六、查看定性变量与目标变量相关性

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、EDA:

EDA(Exploratory Data Analysis)即探索性数据分析,EDA通过可视化、统计和图形化的方法,对数据集进行全面的、非形式化的初步分析,帮助分析人员了解数据的基本特征,发现数据中的规律和模式。这有助于获取对数据的直观感受和深刻理解,为后续的数据处理和建模提供基础。

二、导入类库

# 导入类库
import numpy as np
import pandas as pd
import scipy.stats as statsimport matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px  import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import RobustScalerfrom sklearn.decomposition import PCA
from sklearn.model_selection import cross_val_score, GridSearchCV, KFoldfrom sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin
from sklearn.base import clone
from sklearn.linear_model import Lasso
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor
from sklearn.svm import SVR, LinearSVR
from sklearn.linear_model import ElasticNet, SGDRegressor, BayesianRidge
from sklearn.kernel_ridge import KernelRidge
from xgboost import XGBRegressor
# 显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# pandas显示所有行和列 
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

三、导入数据

train = pd.read_csv('./train.csv')
test = pd.read_csv('./test.csv')train.head()

四、查看数据类型和缺失情况

train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 90615 entries, 0 to 90614
Data columns (total 10 columns):#   Column          Non-Null Count  Dtype  
---  ------          --------------  -----  0   id              90615 non-null  int64  1   Sex             90615 non-null  object 2   Length          90615 non-null  float643   Diameter        90615 non-null  float644   Height          90615 non-null  float645   Whole weight    90615 non-null  float646   Whole weight.1  90615 non-null  float647   Whole weight.2  90615 non-null  float648   Shell weight    90615 non-null  float649   Rings           90615 non-null  int64  
dtypes: float64(7), int64(2), object(1)
memory usage: 6.9+ MB

五、确认目标变量和ID

Target_features = ['Rings'] #目标变量
ID_features = ['id'] #id

六、查看目标变量分布情况

Target_counts = train[Target_features].value_counts().reset_index()  
Target_counts.columns = [Target_features[0], 'Count']  # 绘制条形图  
fig = px.bar(Target_counts,x=Target_features[0], y='Count', title=Target_features[0]+'分布')  # 遍历每个轨迹并设置文本  
def set_text(trace):  trace.text = [f"{val:.1f}" for val in trace.y]  trace.textposition = 'outside'  fig.for_each_trace(set_text)  # 显示图表  
fig.show()

在这里插入图片描述

七、特征变量按照数据类型分成定量变量和定性变量

# 移除ID和目标变量
train_columns = list(train.columns)
train_columns.remove(Target_features[0])
train_columns.remove(ID_features[0])# 特征变量按照数据类型分成定量变量和定性变量
quantitative = [feature for feature in train_columns if train.dtypes[feature] != 'object'] # 定量变量
print('定量变量')
print(quantitative)
qualitative = [feature for feature in train_columns if train.dtypes[feature] == 'object'] # 定性变量
print('定性变量')
print(qualitative)
定量变量
['Length', 'Diameter', 'Height', 'Whole weight', 'Whole weight.1', 'Whole weight.2', 'Shell weight']
定性变量
['Sex']

八、查看定量变量分布情况

# 查看定量变量分布情况
m_cont = pd.melt(train, value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.distplot, 'value')

在这里插入图片描述

九、查看定量变量的离散程度

# 查看定量变量的离散程度
def plot_boxplots(df):m_disc = pd.melt(df)g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)g.map(sns.boxplot, 'variable', 'value', width=0.5)plt.show()plot_boxplots(train[quantitative])       

在这里插入图片描述

十、查看定量变量与目标变量关系

# 定量变量与目标变量关系图
m_cont = pd.melt(train, id_vars=Target_features[0], value_vars=quantitative)
g = sns.FacetGrid(m_cont, col='variable', col_wrap=4, sharex=False, sharey=True)
g.map(plt.scatter, 'value', Target_features[0])

在这里插入图片描述

十一、查看定性变量分布情况

# 定性变量频数统计图
m_disc = pd.melt(train, value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.countplot, 'value')

在这里插入图片描述

十二、查看定性变量与目标变量关系

# 定性变量与目标变量关系图
m_disc = pd.melt(train, id_vars=Target_features[0], value_vars=qualitative)
g = sns.FacetGrid(m_disc, col='variable', col_wrap=4, sharex=False, sharey=False)
g.map(sns.boxplot, 'value', Target_features[0])

在这里插入图片描述

十三、查看定性变量对目标变量的显著性影响

# 查看定性变量对目标变量的显著性影响
def anova(frame, qualitative):anv = pd.DataFrame()anv['feature'] = qualitativep_vals = []for fea in qualitative:samples = []cls = frame[fea].unique() # 变量的类别值for c in cls:c_array = frame[frame[fea]==c][Target_features[0]].valuessamples.append(c_array)p_val = stats.f_oneway(*samples)[1] # 获得p值,p值越小,对SalePrice的显著性影响越大p_vals.append(p_val)anv['pval'] = p_valsreturn anv.sort_values('pval')
a = anova(train, qualitative)
a['disparity'] = np.log(1./a['pval'].values) # 对SalePrice的影响悬殊度
plt.figure(figsize=(8, 6))
sns.barplot(x='feature', y='disparity', data=a)
plt.xticks(rotation=90)
plt.show()

在这里插入图片描述

十四、查看定性变量和目标变量的spearman相关系数

# 查看定性变量和目标变量的spearman相关系数
# 需要先把定性变量处理为数值类型
def encode(frame, feature):ordering = pd.DataFrame()ordering['val'] = frame[feature].unique()ordering.index = ordering['val']ordering['spmean'] = frame[[feature, Target_features[0]]].groupby(feature)[Target_features[0]].mean()ordering = ordering.sort_values('spmean')ordering['ordering'] = np.arange(1, ordering.shape[0]+1)ordering = ordering['ordering'].to_dict() # 返回的数据样例{category1:1, category2:2, ...}# 对frame[feature]编码for category, code_value in ordering.items():frame.loc[frame[feature]==category, feature+'_E'] = code_value
qual_encoded = []
for qual in qualitative:encode(train, qual)qual_encoded.append(qual+'_E')
# print(qual_encoded)def spearman(frame, features):spr =  pd.DataFrame()spr['feature'] = featuresspr['spearman'] = [frame[f].corr(frame[Target_features[0]], 'spearman') for f in features]spr = spr.sort_values('spearman')plt.figure(figsize=(6, 0.25*len(features)))sns.barplot(x='spearman', y='feature', data=spr)
spearman(train, quantitative+qual_encoded)

在这里插入图片描述

十五、查看定量变量与目标变量相关性

# 定量变量与目标变量相关性
# plt.figure(1, figsize=(12,9))
corrmat = train[quantitative+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

十六、查看定性变量与目标变量相关性

# 定性变量与目标变量相关性# plt.figure(1, figsize=(12,9))
corrmat = train[qual_encoded+[Target_features[0]]].corr()
k = 10 #number of variables for heatmap
cols = corrmat.nlargest(k, Target_features[0])[Target_features[0]].index
corr = train[list(cols)].corr()
sns.set(font_scale=1.25)
sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述

这篇关于【六 (2)机器学习-EDA探索性数据分析模板】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881917

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc