Hillan and the girl —— 莫比乌斯对两个累加的优化

2024-04-07 01:18

本文主要是介绍Hillan and the girl —— 莫比乌斯对两个累加的优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem Description
“WTF! While everyone has his girl(gay) friend, I only have my keyboard!” Tired of watching others’ affair, Hillan burst into scream, which made him decide not to hold it back.
“All right, I am giving you a question. If you answer correctly, I will be your girl friend.” After listening to Hillan, Girl replied, “What is the value of ∑ni=1∑mj=1f(i,j), where f(i,j)=0 if gcd(i,j) is a square number and f(i,j)=1 if gcd(i,j) is not a square number(gcd(i,j) means the greatest common divisor of x and y)?”
But Hillan didn’t have enough Intelligence Quotient to give the right answer. So he turn to you for help.

Input
The first line contains an integer T(1≤T≤10,000)——The number of the test cases.
For each test case, the only line contains two integers n,m(1≤n,m≤10,000,000) with a white space separated.

Output
For each test case, the only line contains a integer that is the answer.

Sample Input
2
1 2333333
10 10

Sample Output
0
33

Hint

In the first test case, obviously f(i,j) f ( i , j ) always equals to 0, because i i always equals to 1 and gcd(i,j) is always a square number(always equals to 1).

这个有两个玩意,所以它构造出来就是
sqrt(k)=1nf(k)= ∑ s q r t ( k ) = 1 n f ( k ) = k|pg(p)(p<=N) ∑ k | p g ( p ) ( p <= N )
然后用莫比乌斯反演就可以得出我们要求的是
k=1sqrt(n) ∑ k = 1 s q r t ( n ) k|pμ(p/k)f(p) ∑ k | p μ ( p / k ) ∗ f ( p )
而f(p)是在n,m中gcd=p的倍数所有数量,那么就等于
k=1sqrt(n) ∑ k = 1 s q r t ( n ) k|pμ(p/k)(n/p)(m/p) ∑ k | p μ ( p / k ) ∗ ( n / p ) ∗ ( m / p )
因为 μ(p/k) μ ( p / k ) 我们是可以预处理出来的,所以需要变换一下式子
p=1n(n/p)(m/p) ∑ p = 1 n ( n / p ) ∗ ( m / p ) k|pμ(p/k) ∑ k | p μ ( p / k )
n/p和m/p可以通过整数分块加速

#include<bits/stdc++.h>
using namespace std;
#define eps 1e-6
#define ll long long
int n,m;
const int maxn=1e7+5;
int nprime[maxn],prime[maxn],cnt,mu[maxn],sum[maxn];
void init()
{cnt=0;mu[1]=1;for(int i=2;i<maxn;i++){if(!nprime[i]){prime[++cnt]=i;mu[i]=-1;}for(int j=1;j<=cnt&&prime[j]*i<maxn;j++){nprime[prime[j]*i]=1;if(i%prime[j]==0){mu[i*prime[j]]=0;break;}mu[i*prime[j]]=-mu[i];}}for(int i=1;i<=sqrt(maxn)+eps;i++)for(int j=i*i;j<maxn;j+=i*i)sum[j]+=mu[j/i/i];for(int i=2;i<maxn;i++)sum[i]+=sum[i-1];
}
int main()
{int t;scanf("%d",&t);init();while(t--){scanf("%d%d",&n,&m);ll ans=0;int ne;if(n>m)swap(n,m);for(int i=1;i<=n;i=ne+1){int l=n/i,r=m/i;ne=min(n/l,m/r);ans+=(ll)(sum[ne]-sum[i-1])*l*r;}printf("%lld\n",(ll)n*m-ans);}return 0;
}

这篇关于Hillan and the girl —— 莫比乌斯对两个累加的优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881302

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜