【模糊逻辑】Type-1 Fuzzy Systems的设计方法和应用-1

2024-04-06 15:36

本文主要是介绍【模糊逻辑】Type-1 Fuzzy Systems的设计方法和应用-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【模糊逻辑】Type-1 Fuzzy Systems的设计方法和应用

  • 4.1 时间序列预测
  • 4.2 提取规则的方法
    • 4.2.1 One-pass method(一次性方法)
      • 4.2.1.1数据赋值法
        • 例子1
      • 4.2.1.1 WM方法
    • 4.2.2 最小二乘法
    • 4.2.3 基于导数的方法
    • 4.2.4 SVD-QR方法
    • 4.2.6 迭代法

4.1 时间序列预测

设置现在有一个时间序列 s ( k ) s(k) s(k),对于观测者可以获得对应的观测值 x ( k ) x(k) x(k)
x ( k ) = s ( k ) + n ( k ) + I n ( k ) + J ( k ) x(k)=s(k)+n(k)+In(k)+J(k) x(k)=s(k)+n(k)+In(k)+J(k)
其中 n ( k ) n(k) n(k)为测量误差/噪声, I n ( k ) In(k) In(k)为自然干扰, J ( k ) J(k) J(k)为人为干扰。

现在我们已经构造好了一个观察的时间序列了。现在我们的目标是去时间序列预测,而我们可以利用是数据是历史滑动窗内的数据,这个滑动窗的大小为p。利用前p个观测值,来预测当前 s ( k ) s(k) s(k)

现在我们拥有N个时间序列的数据 x ( 1 ) , x ( 2 ) , . . . , x ( N ) x(1),x(2),...,x(N) x(1),x(2),...,x(N)
设置前D个点 x ( 1 ) , x ( 2 ) , . . . , x ( D ) x(1),x(2),...,x(D) x(1),x(2),...,x(D)用于训练,即训练集,其中D往往为N的75%~80%;
由此我们的测试集 x ( D + 1 ) , x ( D + 2 ) , . . . , x ( N ) x(D+1),x(D+2),...,x(N) x(D+1),x(D+2),...,x(N)

构造D-p个训练组
X ( 1 ) = [ x ( 1 ) , . . . , x ( p ) , x ( p + 1 ) ] T , . . . , X ( D − p ) = [ x ( D − p ) , . . . , x ( D − 1 ) , x ( D ) ] T , X^{(1)}=[x(1),...,x(p),x(p+1)]^T, ..., X^{(D-p)}=[x(D-p),...,x(D-1),x(D)]^T, X(1)=[x(1),...,x(p),x(p+1)]T,...,X(Dp)=[x(Dp),...,x(D1),x(D)]T,
其中每组的前p个数据作为训练FLS的输入,第p+1的数据作为FLS期望的输出。

同理有N-p-D个检测组
X ( D + 1 ) = [ x ( D + 1 ) , . . . , x ( D + p ) , x ( D + p + 1 ) ] T , . . . , X ( N − p ) = [ x ( N − p ) , . . . , x ( N − 1 ) , x ( N ) ] T , X^{(D+1)}=[x(D+1),...,x(D+p),x(D+p+1)]^T, ..., X^{(N-p)}=[x(N-p),...,x(N-1),x(N)]^T, X(D+1)=[x(D+1),...,x(D+p),x(D+p+1)]T,...,X(Np)=[x(Np),...,x(N1),x(N)]T,

值得注意的是,这里的每个训练组都可以为FLS预测器训练对应的规则,而测试集则用于测试各被提取的规则的精度性能。

4.2 提取规则的方法

4.2.1 One-pass method(一次性方法)

4.2.1.1数据赋值法

该方法是利用数据来构造出在规则的前因(antecedent)和后因(consequent)中的模糊集的中心
在这里插入图片描述

例子1

如果现在 F i l F_i^l Fil是一个为Gaussian MF的模糊集
μ F i l ( x i ) = exp ⁡ { − ( x i − m F i l ) 2 2 σ F i l 2 } , i = 1 , 2 , . . . , p \mu_{F_i^l}(x_i)=\exp \{-\frac{(x_i-m_{F_i^l})^2}{2\sigma_{F_i^l}^2}\},i=1,2,...,p μFil(xi)=exp{2σFil2(ximFil)2},i=1,2,...,p
对于一个规则来说,前因参数数目为2p,后因参数数目为1,
现在我们有D-p个测试组,即有D-p个规则,那么总共涉及到了 ( 2 p + 1 ) ( D − p ) (2p+1)(D-p) (2p+1)(Dp)个参数。

针对以上的例子,问题的关键是,我们应该如何去选择大量的MF和初始化大量的参数

4.2.1.1 WM方法

在这里插入图片描述该方法主要是通过预指定好前因和后因的数据,然后将将这些数据关联起来
以上图为例,

  • 首先,设计好关于 x ( l ) x^{(l)} x(l)的自由度 μ x ( x ) \mu_x(x) μx(x)
  • 然后将时间序列映射到其中最大的自由度对应的值;
  • 由此得到一个具有输入输出关系的规则了

以上图为例, x 1 → B 1 , x 2 → S 2 , x 3 → B 3 , x 4 → C E , . . . x_1\rightarrow B_1,x_2\rightarrow S_2,x_3\rightarrow B_3,x_4\rightarrow CE,... x1B1,x2S2,x3B3,x4CE,...

但是以上的WM方法也存在一个问题就是,对于大量的数据,可能产生相互矛盾的规则。
对于这样的现象,我们往往选择从中选择一个最大值的情况。

以上介绍了数据赋值方法和WM方法都属于One-pass方法,特点都是比较简单,可实现;但需要大量的参数和规则提前设定

接下来,我们的目标是构造一个FLS框架,利用数据来最优化参数并减少规则。

4.2.2 最小二乘法

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

4.2.3 基于导数的方法

两种最流行和广泛使用的基于导数的优化算法是 steepest 下降和 Marquardt-Levenberg。使用它们时,不会提前固定任何前因或后因参数。这两种算法都需要关于每个 MF 参数的数学目标函数的一阶导数。在本节中,重点介绍单例 Mamdani 模糊系统和乘积 t 范数的最陡峭下降算法
在这里插入图片描述
最速下降优化算法仅对每个 e ( t ) e^{(t)} e(t)更新一次参数 θ \theta θ在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 如果 MF 在其域上更改其数学公式(例如,三角形和梯形 MF 的情况),则导数公式也会更改,并且必须包括耗时的域测试。
  • 他们倾向于只找到目标函数的局部极值而不是全局极值,也就是说,他们倾向于被困在局部极值。当然,有一些方法可以避免被困住,但是当使用衍生品时,有被困的倾向。
  • 如何选择FBF的数量,M,是一个悬而未决的问题。下一个方法可用于解决此缺点。

4.2.4 SVD-QR方法

对于模糊系统来说,规则分解可能是一个问题,而奇异值分解 (SVD) 是规则约简的一种方法。矩阵的 SVD 是数值线性代数中非常强大的工具。它的重要用途包括确定矩阵的秩和线性最小二乘问题的数值解。它可以应用于正方形或矩形矩阵,其元素要么是实数,要么是复数
在这里插入图片描述在这里插入图片描述在这里插入图片描述

4.2.6 迭代法

在这里插入图片描述

这篇关于【模糊逻辑】Type-1 Fuzzy Systems的设计方法和应用-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880204

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Apache Tomcat服务器版本号隐藏的几种方法

《ApacheTomcat服务器版本号隐藏的几种方法》本文主要介绍了ApacheTomcat服务器版本号隐藏的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1. 隐藏HTTP响应头中的Server信息编辑 server.XML 文件2. 修China编程改错误

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁