数学矩阵GCD和lCM(详解)

2024-04-06 09:20
文章标签 详解 数学 矩阵 gcd lcm

本文主要是介绍数学矩阵GCD和lCM(详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩阵乘法

知阵乘法是《线性代数》中的基础内容,但在考察数学的算法题中也会出现。
本节我们学习基础的矩阵乘法规则。
每个矩阵会有一个行数和一个列数,只有当相乘的两个矩阵的左矩阵的列数等于右矩阵的行数
时,才能相乘,否则不允许做矩阵乘法。
例如,3x5的矩阵可以和5x7的矩阵做乘法,但是3x5的阵不能和4x7的矩阵做乘法N*M的知阵利M*K的矩阵做乘法后的矩阵大小为N*K
矩阵乘法的规则用一句话描述就是,第一个矩阵A的第i行和第二个矩阵B的第i列的各M个元素对应相乘再相加得到新矩阵C[i][j]的值

 例题

矩阵相乘

题目描述

小明最近刚刚学习了矩阵乘法,但是他计算的速度太慢,于是他希望你能帮他写一个矩阵乘法的运算器。

输入描述

输入的第一行包含三个正整数 N,M,K,表示一个 $NM的矩阵乘以一个的矩阵乘以一个MK的矩阵。接下来N行,每行M个整数,表示第一个矩阵。再接下来的M行,每行K$ 个整数,表示第二个矩阵。

0<<N,M,K≤100, 0≤ 矩阵中的每个数 ≤1000

输出描述

输出有 N 行,每行 K 个整数,表示矩阵乘法的结果。

输入输出样例

示例

输入

2 1 3
1
2
1 2 3

输出

1 2 3
2 4 6
package shuxeu;
import java.util.*;
public class juzhen {public static void main(String[] args) {// TODO Auto-generated method stubScanner scan=new Scanner(System.in);int m=scan.nextInt();int n=scan.nextInt();int k=scan.nextInt();int [][]a=new int[m][n];int [][]p=new int[n][k];for(int i=0;i<m;i++) {for(int j=0;j<n;j++) {a[i][j]=scan.nextInt();}}for(int i=0;i<n;i++) {for(int j=0;j<k;j++) {p[n][k]=scan.nextInt();}}int[][]sum=new int[m][k];for(int i=0;i<m;i++) {for(int j=0;j<k;j++) {for(int c=0;c<n;c++) {sum[i][j]+=a[i][c]*p[c][j];		}System.out.println(sum[i][j]);}System.out.println("");}}}

 整除

在计算机中,整数之间的除法往往是整除且向下取整的

同余 

同余是数论中非常重要的概念,意思是两个或多个数字x,对于一个模数M的余数是相等的
或者说在模M意义下,他们是相等的。
例如当M=7,x=[1,8,15,8,50]是同余的,这些x有一个共同的关系,就是x%M=1。

GCD和LCM

GCD( Greatest Common Divisor) 是最大公约数,LCM(Least Common Multiple) 是最小公倍数。大多数情况下,我们更关注GCD如果题口和LCM有关,也通常会转换成和GCD相关的。
gcd通过欧几里得辗转相除法得到,同样,初次学习不必过于深究其原理,学会使用最重要lcm通过gcd(x,y)*lcm(x,y)=x*y来得到。

gcd欧几里得辗转相除法

public int gcd(int a,int b){

        return b==0?a:gcd(b,a%b);

}

简单地理解一下,首先不妨设a<b,有gcd(a,b)=gcd(a,b-a)=gcd(a,b-2a)...=gcd(a,b%a),又有
b%a<a,于是将他们两个调换位置,继续向下递归,直到b变为0,gcd(x,0)=x。

LCM求解方法

public int lcm(int a,int b){

        return a/gcd(a,b)*m;

}

推荐先做除法,再做乘法,避免溢出。

例题

最大公约数

题目描述

给定两个正整数A,B,求它们的最大公约数。

输入描述

第 1 行为一个整数 T,表示测试数据数量。

接下来的 T 行每行包含两个正整数 A,B。

1≤T≤10^5,1≤A,B≤10^9。

输出描述

输出共 T 行,每行包含一个整数,表示答案。

输入输出样例

示例 1

输入

5
2 4
3 7
5 10
6 8
7 9

输出

2
1
5
2
1
package gcd;
import java.util.*;
public class chapter1 {public static void main(String[] args) {// TODO Auto-generated method stubScanner scan=new Scanner(System.in);long T=scan.nextLong();while(T-->0) {long A=scan.nextLong();long B=scan.nextLong();long sum=gcd(A,B);System.out.println(sum);}}private static long gcd(long a, long b) {// TODO Auto-generated method stubreturn b==0?a:gcd(b,a%b);}}

这篇关于数学矩阵GCD和lCM(详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879570

相关文章

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很