神经网络基础与人工神经网络

2024-04-05 20:38

本文主要是介绍神经网络基础与人工神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

神经网络基础与人工神经网络

神经网络方面的研究很早就已出现,今天“神经网络”已是一个相当大的、多学科交叉的学科领域。神经网络中最基本的成分是神经元模型。

神经网络

上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。

感知器

为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器。还记得之前的线性回归模型中权重的作用吗?每一个输入值与对应权重的乘积之和得到的数据或通过激活函数来进行判别。下面我们看一下感知器:

感知器

可以看到,一个感知器有如下组成部分:

  • 输入权值,一个感知器可以有多个输入x_1,x_2,x_3...x_nx​1​​,x​2​​,x​3​​...x​n​​,每个输入上有一个权值w_iw​i​​
  • 激活函数,感知器的激活函数有许多选择,以前用的是阶跃函数,sigmoid\left(\frac{1}{1+e^{w*x}}\right)sigmoid(​1+e​w∗x​​​​1​​),其中zz为权重数据积之和
  • 输出,y{=}f\left({w*x}{+}{b}\right)y=f(w∗x+b)

我们了解过sigmoid函数是这样,在之前的线性回归中它对于 二类分类 问题非常擅长。所以在后续的多分类问题中,我们会用到其它的激活函数

sigmoid

神经网络

那么我们继续往后看,神经网络是啥?

多层神经网络

神经网络其实就是按照一定规则连接起来的多个神经元。

  • 输入向量的维度和输入层神经元个数相同
  • 第N层的神经元与第N-1层的所有神经元连接,也叫 全连接
  • 上图网络中最左边的层叫做输入层,负责接收输入数据;最右边的层叫输出层,可以有多个输出层。我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层,因为它们对于外部来说是不可见的。
  • 而且同一层的神经元之间没有连接
  • 并且每个连接都有一个权值,

那么我们以下面的例子来看一看,图上已经标注了各种输入、权重信息。

权重神经网络

对于每一个样本来说,我们可以得到输入值x_1,x_2,x_3x​1​​,x​2​​,x​3​​,也就是节点1,2,3的输入值,那么对于隐层每一个神经元来说都对应有一个偏置项bb,它和权重一起才是一个完整的线性组合

{a_4}{=}sigmoid\left({W_{41}* x_1}{+}{W_{42}* x_2}{+}{W_{43}* x_3}{+}{W_{4b}}\right)a​4​​=sigmoid(W​41​​∗x​1​​+W​42​​∗x​2​​+W​43​​∗x​3​​+W​4b​​)

{a_5}{=}sigmoid\left({W_{51}* x_1}{+}{W_{52}* x_2}{+}{W_{53}* x_3}{+}{W_{5b}}\right)a​5​​=sigmoid(W​51​​∗x​1​​+W​52​​∗x​2​​+W​53​​∗x​3​​+W​5b​​)

{a_6}{=}sigmoid\left({W_{61}* x_1}{+}{W_{62}* x_2}{+}{W_{63}* x_3}{+}{W_{6b}}\right)a​6​​=sigmoid(W​61​​∗x​1​​+W​62​​∗x​2​​+W​63​​∗x​3​​+W​6b​​)

{a_7}{=}sigmoid\left({W_{71}* x_1}{+}{W_{72}* x_2}{+}{W_{73}* x_3}{+}{W_{7b}}\right)a​7​​=sigmoid(W​71​​∗x​1​​+W​72​​∗x​2​​+W​73​​∗x​3​​+W​7b​​)

这样得出隐层的输出,也就是输出层的输入值.

矩阵表示

矩阵表示隐层输出

同样,对于输出层来说我们已经得到了隐层的值,可以通过同样的操作得到输出层的值。那么重要的一点是,分类问题的类别个数决定了你的输出层的神经元个数

神经网络的训练

我们可以说神经网络是一个模型,那么这些权值就是模型的参数,也就是模型要学习的东西。然而,一个神经网络的连接方式、网络的层数、每层的节点数这些参数,则不是学习出来的,而是人为事先设置的。对于这些人为设置的参数,我们称之为超参数。

前向传播

神经网络的训练类似于之前线性回归中的训练优化过程。前面我们已经提到过梯度下降的意义,我们可以分为这么几步:

  • 计算结果误差

  • 通过梯度下降找到误差最小

  • 更新权重以及偏置项

这样我们可以得出每一个参数在进行一次计算结果之后,通过特定的数学理论优化误差后会得出一个变化率\alphaα

反向传播

就是说通过误差最小得到新的权重等信息,然后更新整个网络参数。通常我们会指定学习的速率\lambdaλ(超参数),通过 变化率和学习速率 率乘积,得出各个权重以及偏置项在一次训练之后变化多少,以提供给第二次训练使用

学习率

tensorflow神经网络接口的实现

tf.train.GradientDescentOptimizer

在使用梯度下降时候,一般需要指定学习速率

tf.train.GradientDescentOptimizer(0.5)

方法

init

构造一个新的梯度下降优化器

__init__(learning_rate,use_locking=False,name='GradientDescent'
)
  • learning_rate tensor或者浮点值,用于学习速率

minimize

添加操作以更新最小化loss,这种方法简单结合调用compute_gradients()和 apply_gradients()(这两个方法也是梯度下降优化器的方法)。如果要在应用它们之前处理梯度,则调用compute_gradients()和apply_gradients()显式而不是使用此函数。

minimize(loss,global_step=None,var_list=None,gate_gradients=GATE_OP,aggregation_method=None,colocate_gradients_with_ops=False,name=None,grad_loss=None
)
  • loss 损失值,变量值
  • global_step 变量,在每次更新之后加1

这篇关于神经网络基础与人工神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/878088

相关文章

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是