【机器学习基础】概率分布之变量

2024-04-05 04:38

本文主要是介绍【机器学习基础】概率分布之变量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本系列为《模式识别与机器学习》的读书笔记。

一,二元变量

1,二项分布

考虑⼀个⼆元随机变量 x ∈ { 0 , 1 } x \in \{0, 1\} x{0,1}。 例如, x x x 可能描述了扔硬币的结果, x = 1 x = 1 x=1 表⽰“正⾯”, x = 0 x = 0 x=0 表⽰反⾯。我们可以假设有⼀个损坏的硬币,这枚硬币正⾯朝上的概率未必等于反⾯朝上的概率。 x = 1 x = 1 x=1 的概率被记作参数 μ \mu μ,因此有:
p ( x = 1 ∣ μ ) = μ (2.1) p(x=1|\mu) = \mu\tag{2.1} p(x=1μ)=μ(2.1)
其中 0 ≤ μ ≤ 1 0\le \mu\le 1 0μ1 x x x 的概率分布因此可以写成:
Bern ( x ∣ μ ) = μ x ( 1 − μ ) 1 − x (2.2) \text {Bern}(x|\mu) = \mu^{x}(1-\mu)^{1-x}\tag{2.2} Bern(xμ)=μx(1μ)1x(2.2)
这被叫做伯努利分布Bernoulli distribution)。容易证明,这个分布是归⼀化的,并且均值和⽅差分别为:
E [ x ] = μ (2.3) \mathbb{E}[x] = \mu\tag{2.3} E[x]=μ(2.3)

var [ x ] = μ ( 1 − μ ) (2.4) \text{var}[x] = \mu(1-\mu)\tag{2.4} var[x]=μ(1μ)(2.4)

如图 2.1: ⼆项分布关于 m m m 的函数的直⽅图,其中 N = 10 N = 10 N=10 μ = 0.25 \mu = 0.25 μ=0.25
二项分布
假设我们有⼀个 x x x 的观测值的数据集 D = { x 1 , … , x N } \mathcal{D} = \{x_1 ,\dots, x_N\} D={x1,,xN}。假设每次观测都是独⽴地从 p ( x ∣ μ ) p(x | \mu) p(xμ) 中抽取的,因此可以构造关于 μ \mu μ 的似然函数:
p ( D ∣ μ ) = ∏ n = 1 N p ( x n ∣ μ ) = ∏ n = 1 N μ x n ( 1 − μ ) 1 − x n (2.5) p(\mathcal{D}|\mu) = \prod_{n=1}^{N}p(x_{n}|\mu) = \prod_{n=1}^{N}\mu^{x_{n}}(1-\mu)^{1-x_{n}}\tag{2.5} p(Dμ)=n=1Np(xnμ)=n=1Nμxn(1μ)1xn(2.5)
其对数似然函数:
ln ⁡ p ( D ∣ μ ) = ∑ n = 1 N ln ⁡ p ( x n ∣ μ ) = ∑ n = 1 N { x n ln ⁡ μ + ( 1 − x n ) ln ⁡ ( 1 − μ ) } (2.6) \ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N}\ln p(x_{n}|\mu) = \sum_{n=1}^{N}\{ x^n \ln \mu + (1-x^n) \ln (1-\mu)\}\tag{2.6} lnp(Dμ)=n=1Nlnp(xnμ)=n=1N{xnlnμ+(1xn)ln(1μ)}(2.6)
在公式(2.6)中,令 ln ⁡ p ( D ∣ μ ) \ln p(\mathcal{D}|\mu) lnp(Dμ) 关于 μ \mu μ 的导数等于零,就得到了最⼤似然的估计值,也被称为样本均值sample mean):
μ M L = 1 N ∑ n = 1 N x n (2.7) \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_{n}\tag{2.7} μML=N1n=1Nxn(2.7)
求解给定数据集规模 N

这篇关于【机器学习基础】概率分布之变量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877642

相关文章

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

java如何调用kettle设置变量和参数

《java如何调用kettle设置变量和参数》文章简要介绍了如何在Java中调用Kettle,并重点讨论了变量和参数的区别,以及在Java代码中如何正确设置和使用这些变量,避免覆盖Kettle中已设置... 目录Java调用kettle设置变量和参数java代码中变量会覆盖kettle里面设置的变量总结ja

Perl 特殊变量详解

《Perl特殊变量详解》Perl语言中包含了许多特殊变量,这些变量在Perl程序的执行过程中扮演着重要的角色,:本文主要介绍Perl特殊变量,需要的朋友可以参考下... perl 特殊变量Perl 语言中包含了许多特殊变量,这些变量在 Perl 程序的执行过程中扮演着重要的角色。特殊变量通常用于存储程序的

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

变量与命名

引言         在前两个课时中,我们已经了解了 Python 程序的基本结构,学习了如何正确地使用缩进来组织代码,并且知道了注释的重要性。现在我们将进一步深入到 Python 编程的核心——变量与命名。变量是我们存储数据的主要方式,而合理的命名则有助于提高代码的可读性和可维护性。 变量的概念与使用         在 Python 中,变量是一种用来存储数据值的标识符。创建变量很简单,

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss