DSP48E1 (primitive)原语例化实例2

2024-04-04 18:18

本文主要是介绍DSP48E1 (primitive)原语例化实例2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DSP48E1 (primitive)原语例化实例2

再补充两个比较常用的用法。

1  o <= in1*in2-c

OPMODE=7'b0110101

ALUMODE=0001

CARRYIN=1

ALUMODE = 0001 可以实现- Z + (X + Y) - 1 = not (Z) + X + Y

OPMODE[6:4]=011, Z选择C

CARRYIN=1, 即实现-Z+(X+Y)-1+1=(X+Y)-Z, 把这个-1抵消了


`timescale 1ns / 10ps // timescale time_unit/time_presicionmodule test(input wire clk,input wire rst,input wire signed [24:0] in1,input wire signed [17:0] in2,input wire signed [47:0] c,output wire signed [47:0]  o,output wire signed [29:0] acout,output wire signed [17:0] bcout,output wire [3:0] carryout,output wire [3:0] carrycasout,output wire signed [47:0] pcout
);DSP48E1 #(
.A_INPUT("DIRECT"),
.B_INPUT("DIRECT"),
.USE_DPORT("FALSE"),
.USE_MULT("MULTIPLY"),       
.USE_SIMD("ONE48"),               .AUTORESET_PATDET("NO_RESET"),    // "NO_RESET", "RESET_MATCH", "RESET_NOT_MATCH"
.MASK(48'h3fffffffffff),          // 48-bit mask value for pattern detect (1=ignore)
.PATTERN(48'h000000000000),       // 48-bit pattern match for pattern detect
.SEL_MASK("MASK"),           // "C", "MASK", "ROUNDING_MODE1", "ROUNDING_MODE2"
.SEL_PATTERN("PATTERN"),          // Select pattern value ("PATTERN" or "C")
.USE_PATTERN_DETECT("NO_PATDET"),  // Enable pattern detect ("PATDET" or "NO_PATDET")// Register Control Attributes: Pipeline Register Configuration
.ACASCREG(0),            //
.ADREG(1),               // Number of pipeline stages for pre-adder (0 or 1).ALUMODEREG(0),          // Number of pipeline stages for ALUMODE (0 or 1).AREG(0),                 // Number of pipeline stages for A (0, 1 or 2)  .BCASCREG(0),            // Number of pipeline stages between B/BCIN and BCOUT (0, 1 or 2).BREG(0),                         // Number of pipeline stages for B (0, 1 or 2).CARRYINREG(0),                   // Number of pipeline stages for CARRYIN (0 or 1)
.CARRYINSELREG(0),                // Number of pipeline stages for CARRYINSEL (0 or 1)
.CREG(0),                         // Number of pipeline stages for C (0 or 1)
.DREG(0),                         // Number of pipeline stages for D (0 or 1)
.INMODEREG(1),                    // Number of pipeline stages for INMODE (0 or 1)
.MREG(0),                         // Number of multiplier pipeline stages (0 or 1)
.OPMODEREG(0),                    // Number of pipeline stages for OPMODE (0 or 1)
.PREG(1)                          // Number of pipeline stages for P (0 or 1))
DSP48E1_inst (
// Cascade: 30-bit (each) output: Cascade Ports
.ACOUT(acout),                   // 30-bit output: A port cascade output
.BCOUT(bcout),                   // 18-bit output: B port cascade output
.CARRYCASCOUT(carrycasout),     // 1-bit output: Cascade carry output
.MULTSIGNOUT(),       // 1-bit output: Multiplier sign cascade output
.PCOUT(pcout),                   // 48-bit output: Cascade output
//这些引脚空着就好// Control: 1-bit (each) output: Control Inputs/Status Bits
.OVERFLOW(),             // 1-bit output: Overflow in add/acc output
.PATTERNBDETECT(),        // 1-bit output: Pattern bar detect output
.PATTERNDETECT(),   // 1-bit output: Pattern detect output
.UNDERFLOW(),           // 1-bit output: Underflow in add/acc output
//这些引脚也空着,没用// Data: 4-bit (each) output: Data Ports
.CARRYOUT(carryout),                               // 4-bit output: Carry output
.P(o),                           // 48-bit output: Primary data output
//P输出48bit的// Cascade: 30-bit (each) input: Cascade Ports
.ACIN(30'b0),                     // 30-bit input: A cascade data input
.BCIN(18'b0),                     // 18-bit input: B cascade input
.CARRYCASCIN(1'b0),              // 1-bit input: Cascade carry input
.MULTSIGNIN(1'b0),         // 1-bit input: Multiplier sign input
.PCIN(48'b0),                     // 48-bit input: P cascade input
//这些引脚很重要,做流水线时,数据又这几个引脚输入。// Control: 4-bit (each) input: Control Inputs/Status Bits
.ALUMODE(4'b0001),               // 4-bit input: ALU control input
.CARRYINSEL(3'b0),         // 3-bit input: Carry select input
.CLK(clk),                       // 1-bit input: Clock input
.INMODE(5'b0),                 // 5-bit input: INMODE control input
.OPMODE(7'b0110101),                 // 7-bit input: Operation mode input// Data: 30-bit (each) input: Data Ports
.A(in1),                           // 30-bit input: A data input
.B(in2),                           // 18-bit input: B data input
//.C(48'hffffffffffff),              // 48-bit input: C data input
.C(c),              // 48-bit input: C data input.CARRYIN(1'b1),                      // 1-bit input: Carry input signal
.D(25'b0),                           // 25-bit input: D data input// Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs
.CEA1(1'b0),                      // 1-bit input: Clock enable input for 1st stage AREG
.CEA2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage AREG
.CEAD(1'b0),                      // 1-bit input: Clock enable input for ADREG
.CEALUMODE(1'b0),                 // 1-bit input: Clock enable input for ALUMODE
.CEB1(1'b0),                      // 1-bit input: Clock enable input for 1st stage BREG
.CEB2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage BREG
.CEC(1'b0),                       // 1-bit input: Clock enable input for CREG
.CECARRYIN(1'b0),                 // 1-bit input: Clock enable input for CARRYINREG
.CECTRL(1'b0),                    // 1-bit input: Clock enable input for OPMODEREG and CARRYINSELREG
.CED(1'b0),                       // 1-bit input: Clock enable input for DREG
.CEINMODE(1'b0),                  // 1-bit input: Clock enable input for INMODEREG
.CEM(1'b0),                       // 1-bit input: Clock enable input for MREG
.CEP(1'b1),                       // 1-bit input: Clock enable input for PREG.RSTA(rst),
.RSTALLCARRYIN(rst),
.RSTALUMODE(rst),
.RSTB(rst),
.RSTC(rst),
.RSTCTRL(rst),
.RSTD(rst),
.RSTINMODE(rst),
.RSTM(rst),
.RSTP(rst)
);endmodulemodule bitstream_tb;
reg rst;
reg dec_clk;reg signed [24:0] a;
reg signed [17:0] b;
reg signed [47:0] d;
reg signed [47:0] c;wire signed [47:0] p;wire signed [29:0] ac;
wire signed [17:0] bc;
wire [3:0] co;
wire [3:0] ccas;
wire signed [47:0] pc;initial beginrst = 0;#200 a = 100;#0 b = 200;#0 d = 45;#0 c = 400;#50 rst = 1;#1 rst = 0;#100 $display("p %d",p);
endalways
begin#1 dec_clk = 0;#1 dec_clk = 1;
endtest test_inst(
.clk(dec_clk),
.rst(rst),
.in1(a),
.in2(b),
.c(c),.o(p),
.acout(ac),
.bcout(bc),
.carryout(co),
.carrycasout(ccas),
.pcout(pc)
);

2  o <= c±in1*in2

即o <= sub?c-in1*in2 : c+in1*in2

ALUMOD=sub?4'b0011:4’b0000

    

`timescale 1ns / 10ps // timescale time_unit/time_presicion
module test(input wire clk,input wire rst,input wire sub,             //0=add,1=subinput wire signed [24:0] in1,input wire signed [17:0] in2,input wire signed [47:0] c,output wire signed [47:0]  o,output wire signed [29:0] acout,output wire signed [17:0] bcout,output wire [3:0] carryout,output wire [3:0] carrycasout,output wire signed [47:0] pcout);DSP48E1 #(.A_INPUT("DIRECT"),.B_INPUT("DIRECT"),.USE_DPORT("FALSE"),.USE_MULT("MULTIPLY"),       .USE_SIMD("ONE48"),               .AUTORESET_PATDET("NO_RESET"),    // "NO_RESET", "RESET_MATCH", "RESET_NOT_MATCH".MASK(48'h3fffffffffff),          // 48-bit mask value for pattern detect (1=ignore).PATTERN(48'h000000000000),       // 48-bit pattern match for pattern detect.SEL_MASK("MASK"),           // "C", "MASK", "ROUNDING_MODE1", "ROUNDING_MODE2".SEL_PATTERN("PATTERN"),          // Select pattern value ("PATTERN" or "C").USE_PATTERN_DETECT("NO_PATDET"),  // Enable pattern detect ("PATDET" or "NO_PATDET")// Register Control Attributes: Pipeline Register Configuration.ACASCREG(0),            //.ADREG(1),               // Number of pipeline stages for pre-adder (0 or 1).ALUMODEREG(0),          // Number of pipeline stages for ALUMODE (0 or 1).AREG(0),                 // Number of pipeline stages for A (0, 1 or 2)  .BCASCREG(0),            // Number of pipeline stages between B/BCIN and BCOUT (0, 1 or 2).BREG(0),                         // Number of pipeline stages for B (0, 1 or 2).CARRYINREG(0),                   // Number of pipeline stages for CARRYIN (0 or 1).CARRYINSELREG(0),                // Number of pipeline stages for CARRYINSEL (0 or 1).CREG(0),                         // Number of pipeline stages for C (0 or 1).DREG(0),                         // Number of pipeline stages for D (0 or 1).INMODEREG(1),                    // Number of pipeline stages for INMODE (0 or 1).MREG(0),                         // Number of multiplier pipeline stages (0 or 1).OPMODEREG(0),                    // Number of pipeline stages for OPMODE (0 or 1).PREG(1)                          // Number of pipeline stages for P (0 or 1))DSP48E1_inst (// Cascade: 30-bit (each) output: Cascade Ports.ACOUT(acout),                   // 30-bit output: A port cascade output.BCOUT(bcout),                   // 18-bit output: B port cascade output.CARRYCASCOUT(carrycasout),     // 1-bit output: Cascade carry output.MULTSIGNOUT(),       // 1-bit output: Multiplier sign cascade output.PCOUT(pcout),                   // 48-bit output: Cascade output//这些引脚空着就好// Control: 1-bit (each) output: Control Inputs/Status Bits.OVERFLOW(),             // 1-bit output: Overflow in add/acc output.PATTERNBDETECT(),        // 1-bit output: Pattern bar detect output.PATTERNDETECT(),   // 1-bit output: Pattern detect output.UNDERFLOW(),           // 1-bit output: Underflow in add/acc output//这些引脚也空着,没用// Data: 4-bit (each) output: Data Ports.CARRYOUT(carryout),                               // 4-bit output: Carry output.P(o),                           // 48-bit output: Primary data output//P输出48bit的// Cascade: 30-bit (each) input: Cascade Ports.ACIN(30'b0),                     // 30-bit input: A cascade data input.BCIN(18'b0),                     // 18-bit input: B cascade input.CARRYCASCIN(1'b0),              // 1-bit input: Cascade carry input.MULTSIGNIN(1'b0),         // 1-bit input: Multiplier sign input.PCIN(48'b0),                     // 48-bit input: P cascade input//这些引脚很重要,做流水线时,数据又这几个引脚输入。// Control: 4-bit (each) input: Control Inputs/Status Bits.ALUMODE(sub?4'b0011:4’b0000),  // 4-bit input: ALU control input.CARRYINSEL(3'b0),         // 3-bit input: Carry select input.CLK(clk),                       // 1-bit input: Clock input.INMODE(5'b0),                 // 5-bit input: INMODE control input.OPMODE(7'b0110101),                 // 7-bit input: Operation mode input// Data: 30-bit (each) input: Data Ports.A(in1),                           // 30-bit input: A data input.B(in2),                           // 18-bit input: B data input//.C(48'hffffffffffff),              // 48-bit input: C data input.C(c),              // 48-bit input: C data input.CARRYIN(1'b0),                      // 1-bit input: Carry input signal.D(25'b0),                           // 25-bit input: D data input// Reset/Clock Enable: 1-bit (each) input: Reset/Clock Enable Inputs.CEA1(1'b0),                      // 1-bit input: Clock enable input for 1st stage AREG.CEA2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage AREG.CEAD(1'b0),                      // 1-bit input: Clock enable input for ADREG.CEALUMODE(1'b0),                 // 1-bit input: Clock enable input for ALUMODE.CEB1(1'b0),                      // 1-bit input: Clock enable input for 1st stage BREG.CEB2(1'b0),                      // 1-bit input: Clock enable input for 2nd stage BREG.CEC(1'b0),                       // 1-bit input: Clock enable input for CREG.CECARRYIN(1'b0),                 // 1-bit input: Clock enable input for CARRYINREG.CECTRL(1'b0),                    // 1-bit input: Clock enable input for OPMODEREG and CARRYINSELREG.CED(1'b0),                       // 1-bit input: Clock enable input for DREG.CEINMODE(1'b0),                  // 1-bit input: Clock enable input for INMODEREG.CEM(1'b0),                       // 1-bit input: Clock enable input for MREG.CEP(1'b1),                       // 1-bit input: Clock enable input for PREG.RSTA(rst),.RSTALLCARRYIN(rst),.RSTALUMODE(rst),.RSTB(rst),.RSTC(rst),.RSTCTRL(rst),.RSTD(rst),.RSTINMODE(rst),.RSTM(rst),.RSTP(rst));endmodulemodule bitstream_tb;reg rst;reg dec_clk;reg           subadd;reg signed [24:0] a;reg signed [17:0] b;reg signed [47:0] d;reg signed [47:0] c;wire signed [47:0] p;wire signed [29:0] ac;wire signed [17:0] bc;wire [3:0] co;wire [3:0] ccas;wire signed [47:0] pc;initial beginrst = 0;#200 a = 10;#0 b = 20;#0 d = 45;#0 c = 400;#0 subadd = 0;#2 subadd = 1;#50 rst = 1;#1 rst = 0;#100 $display("p %d",p);endalwaysbegin#1 dec_clk = 0;#1 dec_clk = 1;endtest test_inst(.clk(dec_clk),.rst(rst),.sub(subadd),.in1(a),.in2(b),.c(c),.o(p),.acout(ac),.bcout(bc),.carryout(co),.carrycasout(ccas),.pcout(pc));endmodule

这篇关于DSP48E1 (primitive)原语例化实例2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876505

相关文章

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

MySQL的索引失效的原因实例及解决方案

《MySQL的索引失效的原因实例及解决方案》这篇文章主要讨论了MySQL索引失效的常见原因及其解决方案,它涵盖了数据类型不匹配、隐式转换、函数或表达式、范围查询、LIKE查询、OR条件、全表扫描、索引... 目录1. 数据类型不匹配2. 隐式转换3. 函数或表达式4. 范围查询之后的列5. like 查询6

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

Java Websocket实例【服务端与客户端实现全双工通讯】

Java Websocket实例【服务端与客户端实现全双工通讯】 现很多网站为了实现即时通讯,所用的技术都是轮询(polling)。轮询是在特定的的时间间隔(如每1秒),由浏览器对服务器发 出HTTP request,然后由服务器返回最新的数据给客服端的浏览器。这种传统的HTTP request 的模式带来很明显的缺点 – 浏 览器需要不断的向服务器发出请求,然而HTTP

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群

828华为云征文|华为云Flexus X实例docker部署rancher并构建k8s集群 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求,一定不要错过这个机会。赶紧去看看吧! 什么是华为云Flexus X实例 华为云Flexus X实例云服务是新一代开箱即用、体

LLVM入门2:如何基于自己的代码生成IR-LLVM IR code generation实例介绍

概述 本节将通过一个简单的例子来介绍如何生成llvm IR,以Kaleidoscope IR中的例子为例,我们基于LLVM接口构建一个简单的编译器,实现简单的语句解析并转化为LLVM IR,生成对应的LLVM IR部分,代码如下,文件名为toy.cpp,先给出代码,后面会详细介绍每一步分代码: #include "llvm/ADT/APFloat.h"#include "llvm/ADT/S

OpenStack离线Train版安装系列—11.5实例使用-Cinder存储服务组件

本系列文章包含从OpenStack离线源制作到完成OpenStack安装的全部过程。 在本系列教程中使用的OpenStack的安装版本为第20个版本Train(简称T版本),2020年5月13日,OpenStack社区发布了第21个版本Ussuri(简称U版本)。 OpenStack部署系列文章 OpenStack Victoria版 安装部署系列教程 OpenStack Ussuri版