本文主要是介绍glm2大语言模型服务环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一、模型介绍
ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:
更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。对于更长的上下文,我们发布了 ChatGLM2-6B-32K 模型。LongBench 的测评结果表明,在等量级的开源模型中,ChatGLM2-6B-32K 有着较为明显的竞争优势。
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。
二、基本环境介绍
芯片:910a
操作系统:openEULER
三、环境搭建
1、下载与芯片型号版本相应的驱动
1)下载驱动,链接为:https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Ascend HDK/Ascend HDK 23.0.RC3/Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run
加速卡的话是910的包:
2)修改权限:
chmod +x Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run
3)安装驱动:
./Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run --full --install-for-all
4) 重启:
Reboot
重启后可以查看驱动信息:npu-smi info
2、安装依赖库
# 安装gcc,make依赖软件等。
yum install -y gcc g++ make cmake unzip pciutils net-tools gfortran
sudo yum install openssl-devel
sudo yum install libffi-devel
sudo yum install zlib-devel
sudo yum install sqlite-devel
sudo yum install blas-devel
sudo yum install blas
3、安装python
使用python源码安装:
到python官网下载源码文件:Python Source Releases | Python.org
这里我们下载python3.8.10
https://www.python.org/ftp/python/3.8.10/Python-3.8.10.tgz
https://www.python.org/ftp/python/3.9.4/Python-3.9.4.tgz
下载成功后,安装:
tar -zxvf Python-3.9.4.tgz
cd Python-3.9.4
./configure --prefix=/usr/local/python3.8.10 --enable-optimizations --enable-shared --with-ssl
make&make install如果因为环境问题安装失败需要重新安装的话,务必执行一下
make clean 删除一下缓存ln -s /usr/local/python3.9.4/bin/python3.9 /usr/bin/python
ln -s /usr/local/python3.9.4/bin/pip3 /usr/bin/pip3
ln -s /usr/local/python3.9.4/bin/lib/libpython3.9m.so.1.0 /usr/lib64/mv /usr/bin/python /usr/bin/python.bak
ln -s /usr/bin/python3 /usr/bin/pythonexport LD_LIBRARY_PATH=/usr/python3.9.4/lib:$LD_LIBRARY_PATH
4、安装依赖包
pip install attrs
pip install numpy
pip install decorator
pip install sympy
pip install cffi
pip install pyyaml
pip install pathlib2
pip install psutil
pip install protobuf
pip install scipy
pip install requests
pip install absl-py
pip install loguru服务依赖
pip install fastapi
pip install "uvicorn[standard]"
Pip install requests为uvicorn添加软链:
ln -s /usr/local/python3.8.10/bin/uvicorn /usr/bin/uvicornpip uninstall te topi hccl -y
pip install sympy
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/te-*-py3-none-any.whl
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/hccl-*-py3-none-any.whl
5、安装cann
cann不支持python 3.9.7以上版本
参考:安装步骤(openEuler 22.03)-安装依赖-安装开发环境-…-文档首页-昇腾社区 (hiascend.com)
- 安装cann:到资源下载中心下载相应的cann包:资源下载中心-昇腾社区 (hiascend.com)
- 基于arm架构的最新版cann:
- 下载:
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/CANN%207.0.RC1/Ascend-cann-toolkit_7.0.RC1_linux-aarch64.run
- 下载到npu目录后,修改为可执行的权限:
chmod -R +x Ascend-cann-toolkit_7.0.RC1_linux-aarch64.run
- 执行安装,指定安装目录到 /usr/local/Ascend
./Ascend-cann-toolkit_7.0.RC1_linux-aarch64.run --install-path=/usr/local/Ascend —full
6、安装mindspore
参考 :MindSpore官网
安装gcc
sudo yum install gcc -y
卸载安装包
pip uninstall te topi hccl -y安装:
pip install sympy
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/te-*-py3-none-any.whl
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/hccl-*-py3-none-any.whl
安装mindspore:
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple
配置环境变量:
# control log level. 0-DEBUG, 1-INFO, 2-WARNING, 3-ERROR, 4-CRITICAL, default level is WARNING.
export GLOG_v=2# Conda environmental options
LOCAL_ASCEND=/usr/local/Ascend # the root directory of run package# lib libraries that the run package depends on
export LD_LIBRARY_PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/lib64:${LOCAL_ASCEND}/driver/lib64:${LOCAL_ASCEND}/ascend-toolkit/latest/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}# Environment variables that must be configured
## TBE operator implementation tool path
export TBE_IMPL_PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/opp/built-in/op_impl/ai_core/tbe
## OPP path
export ASCEND_OPP_PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/opp
## AICPU path
export ASCEND_AICPU_PATH=${ASCEND_OPP_PATH}/..
## TBE operator compilation tool path
export PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/compiler/ccec_compiler/bin/:${PATH}
## Python library that TBE implementation depends on
export PYTHONPATH=${TBE_IMPL_PATH}:${PYTHONPATH}
7、验证安装
python -c "import mindspore;mindspore.set_context(device_target='Ascend');mindspore.run_check()"
验证没问题
在python命令行中键入下列语句,输出正确,没问题
import numpy as np
import mindspore as ms
import mindspore.ops as opsms.set_context(device_target="Ascend")
x = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
print(ops.add(x, y))
8、下载项目源码和模型文件
scp -r -P 25322 ./models root@180.169.210.135:/var/lib/docker/models
9、安装mindpet
Cd /usr/local/mindpet_code
wget https://gitee.com/mindspore-lab/mindpet/repository/archive/master.zip
unzip master.zip
cd mindpet-master/
python set_up.py bdist_wheel
pip install dist/mindpet-1.0.2-py3-none-any.whl
安装完成
10、安装mindformers
Cd /usr/local/mindformers_code
wget https://gitee.com/mindspore/mindformers/repository/archive/dev.zip
Unzip dev.zip
Cd mindformers-dev
bash build.sh
11、环境准备完成
这篇关于glm2大语言模型服务环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!