阿里云PAI + pytorch大语言模型开发环境简介

2024-04-04 14:44

本文主要是介绍阿里云PAI + pytorch大语言模型开发环境简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 阿里云PAI + pytorch大语言模型开发环境简介
    • PAI-DSW 快速入门
    • 1. 安装和配置
    • 2. 模型训练
      • 2.1 数据集准备
      • 2.2 模型训练脚本准备
      • 2.3 提交训练作业
    • 3. 部署模型为推理服务
    • 4. 调用推理服务

阿里云PAI + pytorch大语言模型开发环境简介

PAI-DSW 快速入门

阿里云机器学习PAI(Platform of Artificial Intelligence) 是集数据管理,模型管理,开发,训练,部署为一体的机器学习平台,并为企业级算法团队和数据科学团队提供了一站式开箱即用的机器学习平台解决方案。主要包括:

可视化建模和分布式训练 PAI-Designer

Notebook交互式AI研发 PAI-DSW(Data Science Workshop)

云原生AI基础平台 PAI-DLC(Deep Learning Containers)

在线预测服务 PAI-EAS(Elastic Algorithm Service)

其中,PAI-DSW是一款在阿里巴巴集团内上百个团队的打磨之下,为数据科学团队和算法团队们量身定制的云端机器学习交互式开发IDE,使读取数据、开发、训练及部署模型更简单高效且安全。

PAI-DSW集成了Jupyterlab、Code-Server等多种开源项目,并从网络与数据上打通了ODPS多种数据源,方便用户在构建模型的时候免去重新构建数据管道的工作。同时支持将开发环境直接保存为容器镜像并发起离线训练任务,为人工智能数字化转型添砖加瓦。

1. 安装和配置

首先通过以下命令安装 PAI Python SDK:

!python -m pip install "alipai>=0.4.4"

随后在命令行终端中配置需要使用的资源,按照引导输入阿里云 AccessKey,并指定使用的工作空间及 OSS Bucket:

# 以下命令,请在 命令行终端 中执行.
python -m pai.toolkit.config

我们可以通过 get_default_session() 来验证 SDK 是否配置成功:

import pai
from pai.session import get_default_sessionprint(pai.__version__)sess = get_default_session()# 获取当前使用的工作空间信息
assert sess.workspace_name is not None
print(sess.workspace_name)

2. 模型训练

现在我们将使用 Pytorch 构建一个简单的模型,通过 (w_1x_1 + w_2x_2^2 + w_3x_3^3 + b) 来拟合正弦函数 (y = \sin(x)).

2.1 数据集准备

首先需要准备用于拟合的数据点作为训练集。我们可以直接在本地构造数据点,保存至 ./data/ 目录下,用于后续模型的训练:

import torch
import math
import os
from pai.common.oss_utils import uploadx = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)
p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)# 将生成的数据点保存为`./data/tensor.pt`
ds_path = './data'
os.makedirs(ds_path, exist_ok=True)
ds = torch.cat((xx, y.reshape(len(xx), -1)), dim=1)
torch.save(ds, ds_path + '/tensor.pt')# 上传至 OSS Bucket 中
ds_uri = upload(ds_path, oss_path="sdk-quickstart/data/", bucket=sess.oss_bucket)

2.2 模型训练脚本准备

现在定义我们的 PyTorch 模型及训练方法,保存为 train.py 文件,并放置在 ./train_src/ 目录下,以便配置后续参数:

import ostrain_src_dir = "./train_src"
os.makedirs(train_src_dir, exist_ok=True)

该脚本是以 PyTorch 官方提供的 PyTorch nn 示例 为基础,修改了:

  • 数据集加载逻辑,从而能加载我们上传到 OSS 中的数据集;

  • 模型保存逻辑,从而训练结束后能将训练好的模型输出至我们的 OSS Bucket,保存到 PAI_OUTPUT_MODEL 指定的路径中.

%%writefile train_src/train.py
# -*- coding: utf-8 -*-~
import torch
import osdef train(model, xx, y):
loss_fn = torch.nn.MSELoss(reduction='sum')
learning_rate = 1e-6
for t in range(2000):
y_pred = model(xx)
loss = loss_fn(y_pred, y)
if t % 100 == 99:
print("Step %d/2000: Loss = %.4f" %(t + 1, loss.item()))
model.zero_grad()
loss.backward()with torch.no_grad():
for param in model.parameters():
param -= learning_rate * param.gradif __name__ == "__main__":
model = torch.nn.Sequential(torch.nn.Linear(3, 1),torch.nn.Flatten(0, 1)
)# 加载我们构造的 `tensor.pt` 数据集
ds_path = os.environ.get("PAI_INPUT_TRAIN_DATA", './data')
ds = torch.load(os.path.join(ds_path, 'tensor.pt'))
xx, y = ds[:, :3], ds[:, 3:]
y = y.reshape((len(y)))train(model, xx, y)# 保存模型为 TorchScript 格式,便于后续部署调用
output_model_path = os.environ.get("PAI_OUTPUT_MODEL", "./model/")
os.makedirs(output_model_path, exist_ok=True)
m = torch.jit.script(model)
m.save(os.path.join(output_model_path, "sinNN.pt"))

这里通过 torch.jit.script() 将模型导出为 TorchScript 格式,从而允许该模型在非 Python 环境,例如 Web 服务器中加载与推理。

2.3 提交训练作业

我们可以通过 Estimator 指定该脚本,以及启动命令、运行环境 (镜像)、机器规格,并通过 fit() 方法来提交该训练作业:

from pai.estimator import Estimator
from pai.image import retrieve# 配置训练作业
est = Estimator(
# 训练作业启动命令
command="python train.py",
# 训练作业代码所在目录,对应目录将被上传到 OSS Bucket 上
source_dir="train_src/",
# 训练作业镜像: 使用 PAI 提供的最新的 PyTorch CPU 镜像
image_uri=retrieve(framework_name="PyTorch", framework_version="latest").image_uri,
# 训练使用的机器实例类型
instance_type="ecs.gn6i-c4g1.xlarge",
# 从训练输出日志中通过 regex 采集 metrics
metric_definitions=[{"Name": "loss","Regex": r".*Loss = ([0-9]*.?[0-9]+(?:[eE][-+]?[0-9]+)?)",},
],
)
# 提交训练作业到 PAI,等待训练完成
est.fit(inputs={# 训练作业的输入数据,每一个 Key,Value 对是一个 Channel,用户可以通过环境变量 PAI_INPUT_{ChannelNameUpperCase} 获取对应的数据路径# 例如以下的 train_data,训练的脚本中可以通过`PAI_INPUT_TRAIN_DATA`获取数据挂载后的路径."train_data": ds_uri,
})
# 查看输出模型的OSS路径
print(est.model_data())

提交作业后,我们可以在命令行终端看到训练作业的 URL,点击该 URL 将跳转到 PAI 控制台,显示该作业的详情。在这里,我们可以跟踪训练指标与日志、查看机器资源使用情况等。

同时本地终端也会持续打印作业的输出日志信息,直到训练作业结束。训练时长在 1 分钟左右。

3. 部署模型为推理服务

训练后的模型会输出到 OSS 中,我们可以通过 est.model_data() 获取模型的输出路径,并创建在线推理服务。

PAI 支持通过 镜像部署 的方式将训练好的模型部署为推理服务,我们只需要额外准备模型服务的代码即可:

# 准备推理代码保存目录
!mkdir -p infer_src
%%writefile infer_src/run.py
from flask import Flask, request
import numpy as np
import torch
import json
import osapp = Flask(__name__)
# 默认模型文件路径
MODEL_PATH = "/eas/workspace/model/"device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = torch.jit.load(os.path.join(MODEL_PATH, "sinNN.pt"), map_location=device).to(device)@app.route("/", methods=["POST"])
def predict():
data = json.loads(request.data)
input_data = torch.tensor(np.array(data), dtype=torch.float32)
pred = model(input_data)
return json.dumps(pred.tolist())if __name__ == "__main__":
app.run(host="0.0.0.0", port=int(os.environ.get("LISTENING_PORT", 8000)))

接下来,配置模型推理服务使用的镜像、代码,并创建推理服务对象:

from pai.model import Model, container_serving_spec
from pai.image import retrieve, ImageScopetorch_image = retrieve("PyTorch", framework_version="latest",
image_scope=ImageScope.INFERENCE)inference_spec = container_serving_spec(
# 推理服务的启动命令
command="python run.py",
# 推理服务使用的本地代码路径
source_dir="./infer_src/",
# 使用的推理镜像
image_uri=torch_image.image_uri,
# 使用的第三方依赖
requirements=["flask"
]
)# 2. 使用待部署的模型配置一个Model对象
model = Model(# model_data 可以是OSS Bucket上已有的模型,或是本地路径的模型model_data=est.model_data(),inference_spec=inference_spec,
)# 3. 部署模型到PAI-EAS,创建在线推理服务,返回Predictor对象
p = model.deploy(service_name="example_torch_service",instance_type="ecs.c6.xlarge",
)

4. 调用推理服务

通过 deploy() 方法返回的 Predictor 对象,我们可以通过发送 HTTP 请求的方式调用该推理服务。在 PAI SDK 中,这是通过 predict() 方法:

import numpy as np# 我们的 TorchScript 模型要求输入 type 为 `float32`, shape 为 `(batchSize, 3)`
dummy_input = np.random.rand(10, 3).astype(np.float32)res = p.predict(dummy_input)
print(res)
在测试结束后,记得删除推理服务实例,否则该服务将持续计费:p.delete_service()

这篇关于阿里云PAI + pytorch大语言模型开发环境简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876065

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的