代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II

2024-04-04 11:28

本文主要是介绍代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录:

491.递增子序列

46.全排列

47.全排列 II 

491.递增子序列

491. 非递减子序列 - 力扣(LeetCode)

代码随想录 (programmercarl.com)

回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。

示例 1:

输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]

示例 2:

输入:nums = [4,4,3,2,1]
输出:[[4,4]]

提示:

  • 1 <= nums.length <= 15
  • -100 <= nums[i] <= 100

第一反应是把所有的子序列列出来,然后再判断是不是递增子序列。

 回溯三部曲:
1、确定参数:除了path、result和startIndex之外,还需要一个集合来存放一层的值,避免在同一层中出现重复的值从而出现重复的子序列:

// 声明一个结果集合,用于存储所有满足条件的子序列List<List<Integer>> result = new ArrayList<>();// 声明一个路径集合,用于存储当前正在构建的子序列List<Integer> path = new ArrayList<>();HashSet<Integer> hs = new HashSet<>();
private void backTracking(int[] nums, int startIndex) {
}

 2、确定终止条件:当path的大小大于1,且path里面的值符合曾序序列的要求时,把path加到result数组里,然后返回:

if (path.size() >= 2)result.add(new ArrayList<>(path));

3、确定单层搜索的逻辑:
同一父节点下同层元素中,如果一个数字在同层已经出现过的话,就不能再使用了,因为再次使用的话会出现重复子序列:

 for (int i = startIndex; i < nums.length; i++) {// 如果当前路径不为空,并且路径中的最后一个数字大于当前数字,或者当前数字已经在路径中出现过,则跳过当前数字if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i]))continue;// 将当前数字加入到路径中hs.add(nums[i]);path.add(nums[i]);// 递归调用,继续寻找以当前数字结尾的子序列backTracking(nums, i + 1);// 回溯,将当前数字从路径中移除,准备尝试其他可能的数字path.remove(path.size() - 1);}

综合代码:

// 定义一个名为 Solution 的类
class Solution {// 声明一个结果集合,用于存储所有满足条件的子序列List<List<Integer>> result = new ArrayList<>();// 声明一个路径集合,用于存储当前正在构建的子序列List<Integer> path = new ArrayList<>();// 主方法,入口点public List<List<Integer>> findSubsequences(int[] nums) {// 调用回溯函数,开始查找所有满足条件的子序列backTracking(nums, 0);// 返回结果集合return result;}// 回溯函数,用于查找所有满足条件的子序列private void backTracking(int[] nums, int startIndex) {// 如果当前路径的长度大于等于2,则将其加入到结果集合中if (path.size() >= 2)result.add(new ArrayList<>(path));            // 创建一个哈希集合,用于记录当前路径中已经出现过的数字HashSet<Integer> hs = new HashSet<>();// 遍历数组,从startIndex位置开始for (int i = startIndex; i < nums.length; i++) {// 如果当前路径不为空,并且路径中的最后一个数字大于当前数字,或者当前数字已经在路径中出现过,则跳过当前数字if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i]))continue;// 将当前数字加入到路径中hs.add(nums[i]);path.add(nums[i]);// 递归调用,继续寻找以当前数字结尾的子序列backTracking(nums, i + 1);// 回溯,将当前数字从路径中移除,准备尝试其他可能的数字path.remove(path.size() - 1);}}
}

这里仍然有一个小疑惑:为什么hs里面的数不需要弹出呢?

46.全排列 

. - 力扣(LeetCode)

代码随想录 (programmercarl.com)

组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

提示:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • nums 中的所有整数 互不相同

这道题我第一次看到的时候觉得就是每个位置上每个数字都可以放,但是不知道怎么代码实现。看了卡哥视频:
回溯三部曲:
1、确定参数:排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素。

List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used; // 用于标记数字是否被使用过

2、确定终止条件:叶子节点终止,即path长度和nums数组的大小一样时终止:

 if (path.size() == nums.length){// 将当前路径加入到结果集合中result.add(new ArrayList<>(path));return;}

3、确定单层搜索的逻辑:

// 遍历数组中的每个元素for (int i = 0; i < nums.length; i++){// 如果该元素已经被使用过,则跳过if (used[i]){continue;}// 标记该元素为已使用used[i] = true;// 将该元素加入到当前路径中path.add(nums[i]);// 递归调用,继续生成全排列结果permuteHelper(nums);// 回溯,将当前加入的元素移除path.removeLast();// 标记该元素为未使用used[i] = false;}

综合代码:

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果boolean[] used; // 用于标记数字是否被使用过// 主函数,输入数组 nums,返回其全排列结果public List<List<Integer>> permute(int[] nums) {// 如果数组为空,则直接返回结果集合if (nums.length == 0){return result;}// 初始化 used 数组为与 nums 相同长度的布尔数组used = new boolean[nums.length];// 调用递归函数进行全排列permuteHelper(nums);// 返回全排列结果return result;}// 辅助递归函数,用于生成全排列结果private void permuteHelper(int[] nums){// 如果当前路径长度等于数组长度,表示已经得到一个全排列结果if (path.size() == nums.length){// 将当前路径加入到结果集合中result.add(new ArrayList<>(path));return;}// 遍历数组中的每个元素for (int i = 0; i < nums.length; i++){// 如果该元素已经被使用过,则跳过if (used[i]){continue;}// 标记该元素为已使用used[i] = true;// 将该元素加入到当前路径中path.add(nums[i]);// 递归调用,继续生成全排列结果permuteHelper(nums);// 回溯,将当前加入的元素移除path.removeLast();// 标记该元素为未使用used[i] = false;}}
}

47.全排列 II 

47. 全排列 II - 力扣(LeetCode)

代码随想录 (programmercarl.com)

回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],[1,2,1],[2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

如图,还是要考虑一个去重的逻辑。

1、确定参数:

 // 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();
  // 标记每个数字是否被使用过boolean[] used = new boolean[nums.length];

2、确定终止条件:

// 如果当前路径长度等于数组长度,说明已经找到一个排列if (path.size() == nums.length) {result.add(new ArrayList<>(path)); // 将当前路径加入结果集return; // 结束当前递归}

3、确定单层搜索逻辑:used[i-1]为false的时候,才保证了是树层上的数值不能相同,而不是树枝上。

// 遍历所有数字for (int i = 0; i < nums.length; i++) {// 如果当前数字已经被使用过,直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果当前数字未被使用过,开始处理if (used[i] == false) {used[i] = true; // 标记当前数字被使用过path.add(nums[i]); // 将当前数字加入路径backTrack(nums, used); // 递归处理下一层path.remove(path.size() - 1); // 回溯,移除当前数字used[i] = false; // 恢复当前数字的未使用状态}}

综合代码:

class Solution {// 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();// 主函数,入口public List<List<Integer>> permuteUnique(int[] nums) {// 标记每个数字是否被使用过boolean[] used = new boolean[nums.length];Arrays.fill(used, false); // 初始化为未使用状态Arrays.sort(nums); // 对输入数组排序,确保相同数字相邻backTrack(nums, used); // 调用回溯函数return result; // 返回最终结果}// 回溯函数,用于搜索所有排列组合private void backTrack(int[] nums, boolean[] used) {// 如果当前路径长度等于数组长度,说明已经找到一个排列if (path.size() == nums.length) {result.add(new ArrayList<>(path)); // 将当前路径加入结果集return; // 结束当前递归}// 遍历所有数字for (int i = 0; i < nums.length; i++) {// 如果当前数字已经被使用过,直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果当前数字未被使用过,开始处理if (used[i] == false) {used[i] = true; // 标记当前数字被使用过path.add(nums[i]); // 将当前数字加入路径backTrack(nums, used); // 递归处理下一层path.remove(path.size() - 1); // 回溯,移除当前数字used[i] = false; // 恢复当前数字的未使用状态}}}
}

这篇关于代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875656

相关文章

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1

从0到1,AI我来了- (7)AI应用-ComfyUI-II(进阶)

上篇comfyUI 入门 ,了解了TA是个啥,这篇,我们通过ComfyUI 及其相关Lora 模型,生成一些更惊艳的图片。这篇主要了解这些内容:         1、哪里获取模型?         2、实践如何画一个美女?         3、附录:               1)相关SD(稳定扩散模型的组成部分)               2)模型放置目录(重要)