代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II

2024-04-04 11:28

本文主要是介绍代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录:

491.递增子序列

46.全排列

47.全排列 II 

491.递增子序列

491. 非递减子序列 - 力扣(LeetCode)

代码随想录 (programmercarl.com)

回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。

示例 1:

输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]

示例 2:

输入:nums = [4,4,3,2,1]
输出:[[4,4]]

提示:

  • 1 <= nums.length <= 15
  • -100 <= nums[i] <= 100

第一反应是把所有的子序列列出来,然后再判断是不是递增子序列。

 回溯三部曲:
1、确定参数:除了path、result和startIndex之外,还需要一个集合来存放一层的值,避免在同一层中出现重复的值从而出现重复的子序列:

// 声明一个结果集合,用于存储所有满足条件的子序列List<List<Integer>> result = new ArrayList<>();// 声明一个路径集合,用于存储当前正在构建的子序列List<Integer> path = new ArrayList<>();HashSet<Integer> hs = new HashSet<>();
private void backTracking(int[] nums, int startIndex) {
}

 2、确定终止条件:当path的大小大于1,且path里面的值符合曾序序列的要求时,把path加到result数组里,然后返回:

if (path.size() >= 2)result.add(new ArrayList<>(path));

3、确定单层搜索的逻辑:
同一父节点下同层元素中,如果一个数字在同层已经出现过的话,就不能再使用了,因为再次使用的话会出现重复子序列:

 for (int i = startIndex; i < nums.length; i++) {// 如果当前路径不为空,并且路径中的最后一个数字大于当前数字,或者当前数字已经在路径中出现过,则跳过当前数字if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i]))continue;// 将当前数字加入到路径中hs.add(nums[i]);path.add(nums[i]);// 递归调用,继续寻找以当前数字结尾的子序列backTracking(nums, i + 1);// 回溯,将当前数字从路径中移除,准备尝试其他可能的数字path.remove(path.size() - 1);}

综合代码:

// 定义一个名为 Solution 的类
class Solution {// 声明一个结果集合,用于存储所有满足条件的子序列List<List<Integer>> result = new ArrayList<>();// 声明一个路径集合,用于存储当前正在构建的子序列List<Integer> path = new ArrayList<>();// 主方法,入口点public List<List<Integer>> findSubsequences(int[] nums) {// 调用回溯函数,开始查找所有满足条件的子序列backTracking(nums, 0);// 返回结果集合return result;}// 回溯函数,用于查找所有满足条件的子序列private void backTracking(int[] nums, int startIndex) {// 如果当前路径的长度大于等于2,则将其加入到结果集合中if (path.size() >= 2)result.add(new ArrayList<>(path));            // 创建一个哈希集合,用于记录当前路径中已经出现过的数字HashSet<Integer> hs = new HashSet<>();// 遍历数组,从startIndex位置开始for (int i = startIndex; i < nums.length; i++) {// 如果当前路径不为空,并且路径中的最后一个数字大于当前数字,或者当前数字已经在路径中出现过,则跳过当前数字if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i]))continue;// 将当前数字加入到路径中hs.add(nums[i]);path.add(nums[i]);// 递归调用,继续寻找以当前数字结尾的子序列backTracking(nums, i + 1);// 回溯,将当前数字从路径中移除,准备尝试其他可能的数字path.remove(path.size() - 1);}}
}

这里仍然有一个小疑惑:为什么hs里面的数不需要弹出呢?

46.全排列 

. - 力扣(LeetCode)

代码随想录 (programmercarl.com)

组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

提示:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • nums 中的所有整数 互不相同

这道题我第一次看到的时候觉得就是每个位置上每个数字都可以放,但是不知道怎么代码实现。看了卡哥视频:
回溯三部曲:
1、确定参数:排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素。

List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used; // 用于标记数字是否被使用过

2、确定终止条件:叶子节点终止,即path长度和nums数组的大小一样时终止:

 if (path.size() == nums.length){// 将当前路径加入到结果集合中result.add(new ArrayList<>(path));return;}

3、确定单层搜索的逻辑:

// 遍历数组中的每个元素for (int i = 0; i < nums.length; i++){// 如果该元素已经被使用过,则跳过if (used[i]){continue;}// 标记该元素为已使用used[i] = true;// 将该元素加入到当前路径中path.add(nums[i]);// 递归调用,继续生成全排列结果permuteHelper(nums);// 回溯,将当前加入的元素移除path.removeLast();// 标记该元素为未使用used[i] = false;}

综合代码:

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果boolean[] used; // 用于标记数字是否被使用过// 主函数,输入数组 nums,返回其全排列结果public List<List<Integer>> permute(int[] nums) {// 如果数组为空,则直接返回结果集合if (nums.length == 0){return result;}// 初始化 used 数组为与 nums 相同长度的布尔数组used = new boolean[nums.length];// 调用递归函数进行全排列permuteHelper(nums);// 返回全排列结果return result;}// 辅助递归函数,用于生成全排列结果private void permuteHelper(int[] nums){// 如果当前路径长度等于数组长度,表示已经得到一个全排列结果if (path.size() == nums.length){// 将当前路径加入到结果集合中result.add(new ArrayList<>(path));return;}// 遍历数组中的每个元素for (int i = 0; i < nums.length; i++){// 如果该元素已经被使用过,则跳过if (used[i]){continue;}// 标记该元素为已使用used[i] = true;// 将该元素加入到当前路径中path.add(nums[i]);// 递归调用,继续生成全排列结果permuteHelper(nums);// 回溯,将当前加入的元素移除path.removeLast();// 标记该元素为未使用used[i] = false;}}
}

47.全排列 II 

47. 全排列 II - 力扣(LeetCode)

代码随想录 (programmercarl.com)

回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],[1,2,1],[2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

如图,还是要考虑一个去重的逻辑。

1、确定参数:

 // 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();
  // 标记每个数字是否被使用过boolean[] used = new boolean[nums.length];

2、确定终止条件:

// 如果当前路径长度等于数组长度,说明已经找到一个排列if (path.size() == nums.length) {result.add(new ArrayList<>(path)); // 将当前路径加入结果集return; // 结束当前递归}

3、确定单层搜索逻辑:used[i-1]为false的时候,才保证了是树层上的数值不能相同,而不是树枝上。

// 遍历所有数字for (int i = 0; i < nums.length; i++) {// 如果当前数字已经被使用过,直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果当前数字未被使用过,开始处理if (used[i] == false) {used[i] = true; // 标记当前数字被使用过path.add(nums[i]); // 将当前数字加入路径backTrack(nums, used); // 递归处理下一层path.remove(path.size() - 1); // 回溯,移除当前数字used[i] = false; // 恢复当前数字的未使用状态}}

综合代码:

class Solution {// 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();// 主函数,入口public List<List<Integer>> permuteUnique(int[] nums) {// 标记每个数字是否被使用过boolean[] used = new boolean[nums.length];Arrays.fill(used, false); // 初始化为未使用状态Arrays.sort(nums); // 对输入数组排序,确保相同数字相邻backTrack(nums, used); // 调用回溯函数return result; // 返回最终结果}// 回溯函数,用于搜索所有排列组合private void backTrack(int[] nums, boolean[] used) {// 如果当前路径长度等于数组长度,说明已经找到一个排列if (path.size() == nums.length) {result.add(new ArrayList<>(path)); // 将当前路径加入结果集return; // 结束当前递归}// 遍历所有数字for (int i = 0; i < nums.length; i++) {// 如果当前数字已经被使用过,直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果当前数字未被使用过,开始处理if (used[i] == false) {used[i] = true; // 标记当前数字被使用过path.add(nums[i]); // 将当前数字加入路径backTrack(nums, used); // 递归处理下一层path.remove(path.size() - 1); // 回溯,移除当前数字used[i] = false; // 恢复当前数字的未使用状态}}}
}

这篇关于代码随想录第29天|491.递增子序列 46.全排列 47.全排列 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875656

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.