【深度学习|Pytorch】torchvision.datasets.ImageFolder详解

2024-04-04 07:36

本文主要是介绍【深度学习|Pytorch】torchvision.datasets.ImageFolder详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ImageFolder详解

  • 1、数据准备
  • 2、ImageFolder类的定义
    • transforms.ToTensor()解析
  • 3、ImageFolder返回对象

1、数据准备

创建一个文件夹,比如叫dataset,将cat和dog文件夹都放在dataset文件夹路径下:
在这里插入图片描述

2、ImageFolder类的定义

class ImageFolder(DatasetFolder):def __init__(self,root: str,transform: Optional[Callable] = None,target_transform: Optional[Callable] = None,loader: Callable[[str], Any] = default_loader,is_valid_file: Optional[Callable[[str], bool]] = None,):

可以看到,ImageFolder类有这几个参数:
root:图片存储的根目录,即存放不同类别图片文件夹的前一个路径。
transform:即对加载的这些图片进行的前处理的方式,这里可以传入一个实例化的torchvision.Compose()对象,里面包含了各种预处理的操作。
target_transform:对图片类别进行预处理,通常来说不会用到这一步,因此可以直接不传入参数,默认图像标签没有变换,如果需要进行标签的处理,同样可以传入一个实例化的torchvision.Compose()对象。
loader:表示图像数据加载的方式,通常采用默认的加载方式,ImageFolder加载图像的方式为调用PIL库,因此图像的通道顺序是RGB而非opencv的BGR
is_valid_file:获取图像文件路径的函数,并且可以检查是否有损坏的文件。
示例代码:

ROOT_TEST = 'dataset' #dataset/cat, dataset/dog
normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
val_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),normalize
])# 加载训练数据集
val_dataset = ImageFolder(ROOT_TEST, transform=val_transform)

transforms.ToTensor()解析

这里需要特别说一下ToTensor()这个函数的作用,刚接触深度学习的我那时以为只是单纯的将图像的ndarray和PIL格式转成Tensor格式,后来查看了一下源码之后发现,事情并没有这么简答!

   """Convert a PIL Image or ndarray to tensor and scale the values accordingly.This transform does not support torchscript.Converts a PIL Image or numpy.ndarray (H x W x C) in the range[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)or if the numpy.ndarray has dtype = np.uint8In the other cases, tensors are returned without scaling... note::Because the input image is scaled to [0.0, 1.0], this transformation should not be used whentransforming target image masks. See the `references`_ for implementing the transforms for image masks... _references: https://github.com/pytorch/vision/tree/main/references/segmentation"""

这是关于ToTensor()函数的注解,这里明确指出了ToTensor()可以将PIL和ndarray格式的图像数据转成Tensor并缩放它们的值,这里的缩放他们的值的意思在下面也指出了,即将[0, 255]的像素值域归一化[0, 1.0],并且图像转换成Tensor格式之后,维度的顺序也会发生一点变化,从一开始的HWC变成了CHW的排列方式。

3、ImageFolder返回对象

以第一部分为例,我们用一个val_dataset接收了ImageFolder的返回值,那么这个Val_dataset对象里面包含了什么呢:
val_dataset.classes:存放着根目录下的子文件夹的名称(类别名称)的列表。
val_dataset.class_to_idx:存放着类别名称和各自的索引,字典类型。
val_dataset.extensions:存放着ImageFolder可以读取的图像格式名称,元组类型。
val_dataset.targets:存放着根目录下每一张图的类别索引。
val_dataset.transform:我们提供的transform的方式。
val_dataset.imgs:存放着根目录下每一张图的路径和类别索引。元组列表类型。
以上是关于这个ImageFolder返回的对象的属性的解析。

此外,我们可以通过一个for循环来遍历整个val_dataset的所有图像数据,其中val_dataset[i]是一个元组类型的数据,val_dataset[i][0]代表了前处理后的图像数据,类型为tensor,以AlexNet为例,此时的tensor应该是3 * 224 * 224的维度。val_dataset[i][1]代表了图像的类别索引。
完整示例代码:

import torch
from AlexNet import AlexNet
from torch.autograd import Variable
from torchvision import transforms
from torchvision.transforms import ToPILImage
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader# ROOT_TRAIN = 'D:/pycharm/AlexNet/data/train'
ROOT_TEST = 'dataset'# 将图像的像素值归一化到[-1,1]之间
normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])val_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),normalize
])# 加载训练数据集
val_dataset = ImageFolder(ROOT_TEST, transform=val_transform)# 如果有NVIDA显卡,转到GPU训练,否则用CPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'# 模型实例化,将模型转到device
model = AlexNet().to(device)# 加载train.py里训练好的模型
model.load_state_dict(torch.load(r'save_model/model_best.pth'))# 结果类型
classes = ["cat","dog"
]# 把Tensor转化为图片,方便可视化
show = ToPILImage()# 进入验证阶段
model.eval()
for i in range(10):x, y = val_dataset[i][0], val_dataset[i][1]# show():显示图片# show(x).show()# torch.unsqueeze(input, dim),input(Tensor):输入张量,dim (int):插入维度的索引,最终扩展张量维度为4维x = Variable(torch.unsqueeze(x, dim=0).float(), requires_grad=False).to(device)with torch.no_grad():pred = model(x)# argmax(input):返回指定维度最大值的序号# 得到预测类别中最高的那一类,再把最高的这一类对应classes中的那一类predicted, actual = classes[torch.argmax(pred[0])], classes[y]# 输出预测值与真实值print(f'predicted:"{predicted}", actual:"{actual}"')

这篇关于【深度学习|Pytorch】torchvision.datasets.ImageFolder详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875182

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2