LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】

2024-04-04 07:28

本文主要是介绍LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】

  • 题目描述:
  • 解题思路一:双向链表,函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。一张图:
    • 知识点__slots__
  • 解题思路二:0
  • 解题思路三:0

题目描述:

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:

  • LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
  • int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
  • void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
    函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:

1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

解题思路一:双向链表,函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。一张图:

在这里插入图片描述

class Node:__slots__ = 'prev', 'next', 'key', 'value' # 提高访问属性的速度,并节省内存def __init__(self, key = 0, value = 0):self.key = keyself.value = valueclass LRUCache:def __init__(self, capacity: int):self.capacity = capacityself.dummy = Node() # 哨兵节点self.dummy.prev = self.dummyself.dummy.next = self.dummyself.key_to_node = dict()def get(self, key: int) -> int:node = self.get_node(key)return node.value if node else -1def put(self, key: int, value: int) -> None:node = self.get_node(key)if node: # 有这本书node.value = value # 更新 valuereturn self.key_to_node[key] = node = Node(key, value) # 新书self.push_front(node) # 放在最上面if len(self.key_to_node) > self.capacity: # 书太多了back_node = self.dummy.prevdel self.key_to_node[back_node.key] # 去掉最后一本书self.remove(back_node) # 去掉最后一本书def get_node(self, key: int) -> Optional[Node]:if key not in self.key_to_node: # 没有这本书return Nonenode = self.key_to_node[key] # 有这本书self.remove(node) # 把这本书抽出来self.push_front(node) # 放在最上面return nodedef remove(self, x: Node) -> None: # 删除一个节点(抽出一本书)x.prev.next = x.nextx.next.prev = x.prevdef push_front(self, x: Node) -> None: # 在链表头添加一个节点(把一本书放在最上面)x.prev = self.dummyx.next = self.dummy.nextx.prev.next = xx.next.prev = x# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

时间复杂度:O(1)
空间复杂度:O(min(p,capacity)),其中 p 为 put 的调用次数。

知识点__slots__

slots 是 Python 中用于优化类的属性访问和节省内存的特殊属性。当你定义一个类时,通常每个实例对象都会有一个字典来存储其属性和方法,这种灵活性使得可以在运行时动态地添加、修改和删除属性。然而,对于某些需要高性能和节省内存的场景,这种灵活性可能会显得过于浪费资源。

slots 的作用就是告诉解释器:这个类的实例只能拥有 slots 中指定的属性,而不再使用字典来存储属性。这样做的好处有两个:

  1. 提高访问速度: 由于属性被限定在预定义的集合中,访问这些属性时不再需要通过字典查找,而是可以直接定位到它们,因此访问速度会更快。

  2. 节省内存: 没有了动态属性字典,实例对象所需的内存空间会更小。这在需要大量创建实例对象的场景中尤为有用,可以有效地节省内存资源。

使用 slots 时,你需要在类中定义一个 slots 属性,这个属性是一个字符串组成的元组,用于指定类的实例可以拥有的属性名称。例如:

class MyClass:__slots__ = ('attr1', 'attr2')def __init__(self, a, b):self.attr1 = aself.attr2 = b

在这个例子中,MyClass 的实例只能拥有 attr1 和 attr2 这两个属性,而不能拥有其他动态添加的属性。这样就提高了访问速度和节省了内存。

需要注意的是,使用 slots 也有一些限制:

  • 不能动态添加新的属性,因为 slots 指定了固定的属性集合。
  • 每个实例只能拥有 slots 中指定的属性,而不能拥有其他属性。
  • 继承时如果子类定义了 slots,则父类的 slots 不会被继承。

因此,在需要优化属性访问速度和节省内存的情况下,可以考虑使用 slots

解题思路二:0


时间复杂度:O(n)
空间复杂度:O(n)

解题思路三:0


时间复杂度:O(n)
空间复杂度:O(n)

这篇关于LeetCode-146. LRU 缓存【设计 哈希表 链表 双向链表】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875156

相关文章

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

csu1329(双向链表)

题意:给n个盒子,编号为1到n,四个操作:1、将x盒子移到y的左边;2、将x盒子移到y的右边;3、交换x和y盒子的位置;4、将所有的盒子反过来放。 思路分析:用双向链表解决。每个操作的时间复杂度为O(1),用数组来模拟链表,下面的代码是参考刘老师的标程写的。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry

深入手撕链表

链表 分类概念单链表增尾插头插插入 删尾删头删删除 查完整实现带头不带头 双向链表初始化增尾插头插插入 删查完整代码 数组 分类 #mermaid-svg-qKD178fTiiaYeKjl {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

leetcode-24Swap Nodes in Pairs

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode swapPairs(L

leetcode-23Merge k Sorted Lists

带头结点。 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode(int x) { val = x; }* }*/public class Solution {public ListNode mergeKLists