【算法刷题day15】Leetcode:各种层序遍历、226.翻转二叉树、101. 对称二叉树

本文主要是介绍【算法刷题day15】Leetcode:各种层序遍历、226.翻转二叉树、101. 对称二叉树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • Leetcode 层序遍历
      • 解题思路
      • 代码
      • 总结
    • Leetcode 226.翻转二叉树
      • 解题思路
      • 代码
      • 总结
    • Leetcode 101. 对称二叉树
      • 解题思路
      • 代码
      • 总结

草稿图网站
java的Deque

Leetcode 层序遍历

题目:102.二叉树的层序遍历
题目:107. 二叉树的层序遍历 II
题目:199.二叉树的右视图
题目:637.二叉树的层平均值
题目:429.N叉树的层序遍历
题目:515.在每个树行中找最大值
题目:116.填充每个节点的下一个右侧节点指针
题目:117.填充每个节点的下一个右侧节点指针II
题目:104.二叉树的最大深度
解析:代码随想录解析

解题思路

代码

102.二叉树的层序遍历

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> levelOrder(TreeNode root) {List<List<Integer>> res = new ArrayList<List<Integer>>();if (root == null)return res;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while(!queue.isEmpty()){int size = queue.size();List<Integer> item = new ArrayList<Integer>();for(int i = 0; i < size; i++){TreeNode node = queue.poll();item.add(node.val);if (node.left != null)  queue.add(node.left);if (node.right != null) queue.add(node.right);}res.add(item);}return res;}
}

107. 二叉树的层序遍历 II

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<List<Integer>> levelOrderBottom(TreeNode root) {List<List<Integer>> res = new ArrayList<List<Integer>>();if (root == null)return res;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while(!queue.isEmpty()){int size = queue.size();List<Integer> item = new ArrayList<Integer>();for (int i = 0; i < size; i++){TreeNode node = queue.poll();item.add(node.val);if (node.left != null)  queue.add(node.left);if (node.right != null) queue.add(node.right);}res.add(item);}Collections.reverse(res);return res;}
}

199.二叉树的右视图

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> rightSideView(TreeNode root) {List<Integer> res = new ArrayList<Integer>();if (root == null)return res;Deque<TreeNode> deque = new LinkedList<TreeNode>();deque.add(root);res.add(root.val);while (!deque.isEmpty()){int size = deque.size();for (int i = 0; i < size; i++){TreeNode node = deque.poll();if (node.left != null)  deque.add(node.left);if (node.right != null)  deque.add(node.right);}if (!deque.isEmpty())res.add(deque.getLast().val);}return res;}
}

637.二叉树的层平均值

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Double> averageOfLevels(TreeNode root) {List<Double> res = new ArrayList<Double>();if (root == null)return res;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while (!queue.isEmpty()){int size = queue.size();double sum = 0;for (int i = 0; i < size; i++){TreeNode node = queue.poll();sum += node.val;if (node.left != null)  queue.add(node.left);if (node.right != null) queue.add(node.right);}res.add(sum / size);}return res;}
}

429.N叉树的层序遍历

/*
// Definition for a Node.
class Node {public int val;public List<Node> children;public Node() {}public Node(int _val) {val = _val;}public Node(int _val, List<Node> _children) {val = _val;children = _children;}
};
*/class Solution {public List<List<Integer>> levelOrder(Node root) {List<List<Integer>> res = new ArrayList<List<Integer>>();if (root == null)return res;Queue<Node> queue = new LinkedList<Node>();queue.add(root);while (!queue.isEmpty()){int size = queue.size();List<Integer> item = new ArrayList<Integer>();for (int i = 0; i < size; i++){Node node = queue.poll();item.add(node.val);for (Node n : node.children){if (n != null)queue.add(n);}}res.add(item);}return res;}
}

515.在每个树行中找最大值

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public List<Integer> largestValues(TreeNode root) {List<Integer> res = new ArrayList<Integer>();if (root == null)return res;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while (!queue.isEmpty()){int size = queue.size();int max = Integer.MIN_VALUE;for (int i = 0; i < size; i++){TreeNode node = queue.poll();max = Math.max(max, node.val);if (node.left != null)  queue.add(node.left);if (node.right != null)  queue.add(node.right);}res.add(max);}return res;}
}

116.填充每个节点的下一个右侧节点指针

117.填充每个节点的下一个右侧节点指针II

/*
// Definition for a Node.
class Node {public int val;public Node left;public Node right;public Node next;public Node() {}public Node(int _val) {val = _val;}public Node(int _val, Node _left, Node _right, Node _next) {val = _val;left = _left;right = _right;next = _next;}
};
*/class Solution {public Node connect(Node root) {if (root == null)return root;Queue<Node> queue = new LinkedList<Node>();queue.add(root);while (!queue.isEmpty()){int size = queue.size();Node pre = queue.poll();if (pre.left != null)   queue.add(pre.left);if (pre.right != null)  queue.add(pre.right);for (int i = 1; i < size; i++){Node cur = queue.poll();if (cur.left != null)   queue.add(cur.left);if (cur.right != null)  queue.add(cur.right);pre.next = cur;pre = cur;}}return root;}
}

104.二叉树的最大深度

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int maxDepth(TreeNode root) {int depth = 0;if (root == null)return depth;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while(!queue.isEmpty()){int size = queue.size();depth++;for (int i = 0; i < size; i++){TreeNode node = queue.poll();if (node.left != null)  queue.add(node.left);if (node.right != null) queue.add(node.right);}}return depth;}
}

111.二叉树的最小深度

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int minDepth(TreeNode root) {if (root == null)return 0;int minDepth = Integer.MAX_VALUE;int depth = 0;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while(!queue.isEmpty()){int size = queue.size();depth++;for (int i = 0; i < size; i++){TreeNode node = queue.poll();if (node.left == null && node.right == null)minDepth = Math.min(minDepth, depth);if (node.left != null)  queue.add(node.left);if (node.right != null) queue.add(node.right);}}return minDepth==Integer.MAX_VALUE ? 0 : minDepth;}
}//优化,不需要全部遍历完,因为是一层一层找下去,所以第一个叶子就是最低的
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public int minDepth(TreeNode root) {if (root == null)return 0;int depth = 0;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while(!queue.isEmpty()){int size = queue.size();depth++;for (int i = 0; i < size; i++){TreeNode node = queue.poll();if (node.left == null && node.right == null)return depth;if (node.left != null)  queue.add(node.left);if (node.right != null) queue.add(node.right);}}return depth;}
}

总结

暂无

Leetcode 226.翻转二叉树

题目:226.翻转二叉树
解析:代码随想录解析

解题思路

使用局部遍历存储交换后的,然后稀里糊涂就过了。

代码

/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
class Solution {public TreeNode invertTree(TreeNode root) {if (root == null)return root;TreeNode tmp = invertTree(root.left);root.left = invertTree(root.right);root.right = tmp;return root;}
}//更能体现前序遍历和后续遍历
class Solution {public TreeNode invertTree(TreeNode root) {if (root == null)return root;invertTree(root.left);invertTree(root.right);swapChildren(root);return root;}private void swapChildren(TreeNode node){TreeNode tmp = node.left;node.left = node.right;node.right = tmp;}
}//层序遍历
class Solution {public TreeNode invertTree(TreeNode root) {if (root == null)return root;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root);while (!queue.isEmpty()){int size = queue.size();for (int i = 0; i < size; i++){TreeNode node = queue.poll();swapChildren(node);if (node.left != null)  queue.add(node.left);if (node.right != null) queue.add(node.right);}}return root;}private void swapChildren(TreeNode node){TreeNode tmp = node.left;node.left = node.right;node.right = tmp;}
}//前序
class Solution {public TreeNode invertTree(TreeNode root) {if (root == null)return root;Stack<TreeNode> stack = new Stack<TreeNode>();stack.push(root);while(!stack.isEmpty()){TreeNode node = stack.pop();swapChildren(node);if (node.left != null) stack.push(node.left);if (node.right != null) stack.push(node.right);}return root;}private void swapChildren(TreeNode node){TreeNode tmp = node.left;node.left = node.right;node.right = tmp;}
}//统一深度遍历
class Solution {public TreeNode invertTree(TreeNode root) {if (root == null)return root;Stack<TreeNode> stack = new Stack<TreeNode>();stack.push(root);while(!stack.isEmpty()){TreeNode node = stack.peek();if (node != null){stack.pop();if (node.left != null) stack.push(node.left);if (node.right != null) stack.push(node.right);stack.push(node);stack.push(null);}else{stack.pop();node = stack.pop();swapChildren(node);}}return root;}private void swapChildren(TreeNode node){TreeNode tmp = node.left;node.left = node.right;node.right = tmp;}
}

总结

暂无

Leetcode 101. 对称二叉树

题目:101. 对称二叉树
解析:代码随想录解析

解题思路

遍历遍历遍历

代码

//递归
/*** Definition for a binary tree node.* public class TreeNode {*     int val;*     TreeNode left;*     TreeNode right;*     TreeNode() {}*     TreeNode(int val) { this.val = val; }*     TreeNode(int val, TreeNode left, TreeNode right) {*         this.val = val;*         this.left = left;*         this.right = right;*     }* }*/
//递归
class Solution {public boolean isSymmetric(TreeNode root) {if (root == null)return true;return compare(root.left, root.right);}public boolean compare(TreeNode left, TreeNode right){if (left == null && right == null)return true;else if (left == null || right == null || left.val != right.val)return false;elsereturn compare(left.left, right.right) && compare(left.right, right.left);}
}//使用队列
class Solution {public boolean isSymmetric(TreeNode root) {if (root == null)return true;Queue<TreeNode> queue = new LinkedList<TreeNode>();queue.add(root.left);queue.add(root.right);while (!queue.isEmpty()){TreeNode left = queue.poll();TreeNode right = queue.poll();if (left == null && right == null)continue;if (left == null || right == null || left.val != right.val)return false;queue.add(left.left);queue.add(right.right);queue.add(left.right);queue.add(right.left);}return true;}
}//使用栈
class Solution {public boolean isSymmetric(TreeNode root) {if (root == null)return true;Stack<TreeNode> stack = new Stack<TreeNode>();stack.push(root.left);stack.push(root.right);while (!stack.isEmpty()){TreeNode left = stack.pop();TreeNode right = stack.pop();if (left == null && right == null)continue;if (left == null || right == null || left.val != right.val)return false;stack.push(left.left);stack.push(right.right);stack.push(left.right);stack.push(right.left);}return true;}
}

总结

暂无

这篇关于【算法刷题day15】Leetcode:各种层序遍历、226.翻转二叉树、101. 对称二叉树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874715

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系