Lafida多目数据集实测

2024-04-03 06:52
文章标签 数据 实测 多目 lafida

本文主要是介绍Lafida多目数据集实测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Lafida 数据集

paper:J. Imaging | Free Full-Text | LaFiDa—A Laserscanner Multi-Fisheye Camera Dataset
官网数据:https://www.ipf.kit.edu/english/projekt_cv_szenen.php
官网:KIT-IPF-Software and Datasets - LaFiDa
标定数据下载:http://www2.ipf.kit.edu/~pcv2016/downloads/calibration.zip

0 简介

该数据集由一个头戴式多鱼眼相机系统一个移动激光扫描仪组合而成,还从采样率为 360
Hz 的动作捕捉系统中获得了精确的六自由度(6 DoF)真值姿态。


rigid_body系即动作捕捉系统坐标系,三个白色的是被动球形反向反射标记的校准棒,用于动作捕捉系统

在室内和室外环境中记录了多个序列,包括不同的运动特征、照明条件和场景动态。

所提供的序列由三台硬件触发完全同步的鱼眼相机和同一平台上的移动激光扫描仪拍摄的图像组成。总共提供了六条轨迹。每个轨迹还包括所有传感器的内在和外在校准参数及相关测量值。

此外,我们还将最常用的外置激光扫描仪工具箱推广到相机校准,以便与任意中央相机(如全向或鱼眼投影)配合使用。

基准数据集以知识共享署名协议(CC-BY 4.0)在线发布,其中包含原始传感器数据以及时间戳、校准和评估脚本等规格。

所提供的数据集可用于多鱼眼相机和/或激光扫描仪同步定位与绘图(SLAM)。

对比其他数据集,我们有多个视角的硬同步触发的相机数据:

1 采集设备

设备参数:雷达/相机/动作捕捉

1.1 激光扫描仪

Hokuyo(日本大阪)公司的 UTM-30LX-EW 激光扫描仪,激光脉冲波长为 λ = 905nm,角度分辨率为 0. 25 ◦,视场(FoV)为 270 ◦。距离精度在0.1 米至 10 米之间为 ±30 毫米。指定的脉冲重复频率为 43 kHz,即每秒捕捉 40 条扫描线(40 Hz)。Laserscaner提供的激光扫描仪数据包括每个3D点的扫描角度、距离和强度。为了保持测量数量的恒定,只使用第一次激光返回和第一次强度。因此,每次激光扫描仪旋转的最终测量数量是1080个。

1.2 多相机系统

多鱼眼相机系统(MCS)由多传感器和集成的FPGA组成,硬件触发的图像采集和图像预处理由该平台处理,因此所有图像都是像素同步采集的。

三个分辨率为 754×480 像素的 CMOS相机传感器连接到以 25 Hz 采样率运行的平台上。

Lensagon 鱼眼镜头(BF2M12520),焦距为 1.25 毫米,视场角约为185 ◦。

1.3 动作捕捉系统rigid_body

为了获取多传感器头盔系统运动的精确 6 DoF 地面实况,我们使用了一套运动捕捉系统
(OptiTrack Prime 17W),该系统配有八个硬件触发的高速摄像头。

该系统需要事先进行校准,方法是在摄像机观察到的范围内挥动带有三个被动球形反向反射标记的校准棒。由于校准棒的精确度量尺寸是已知的,所有运动捕捉摄像机的姿势都可以通过度量恢复。运动捕捉系统校准后,可通过三角测量法以 360 Hz 和亚毫米精度跟踪标记的 3 DoF 位置。要确定头盔系统的 6 DoF 运动,至少需要三个标记来创建一个独特的坐标框架。

多个标记的组合称为rigid body,我们系统的刚体定义如图 1d 所示。

2 标定


标定数据下载:http://www2.ipf.kit.edu/~pcv2016/downloads/calibration.zip 

Calibration/
├── Extrinsic_Laserscanner_to_MCS_Calibration 激光扫描仪到MCS中心外参
│   ├── cam2_to_scanner.mat
│   └── cam2_to_scanner.txt
├── Extrinsic_MCS_Calibration 各个相机到MCS中心外参
│   ├── MCS_calibration_cayley.txt
│   ├── MCS_calibration.mat
│   └── MCS_calibration.txt
├── Extrinsic_Rigid_Body_to_MCS_Calibration MCS到RigidBody中心外参
│   ├── MCS_to_RigidBody.mat
│   └── MCS_to_RigidBody.txt
└── Intrinsic_Camera_Calibrations 各个相机的内参
    ├── calib_results_back.txt
    ├── calib_results_left_cam2.txt
    ├── calib_results_right.txt
    ├── Omni_Calib_Results_back.mat
    ├── Omni_Calib_Results_left.mat
    └── Omni_Calib_Results_right.mat

2.1 内参标定(Intrinsic_Camera_Calibrations)

使用Ocam-Toolbox计算每个摄像头的内参,再配合一些改进。具体过程和改进的代码:GitHub - urbste/ImprovedOcamCalib: This is an add-on to the OCamCalib toolbox by Scaramuzza et al.​​​​​​P

2.2 相机外参(Extrinsic_MCS_Calibration)

三个相机到MCS中心(其位置由 OptiTrack 系统给出)的变换矩阵,MCS坐标系和cam2(left camera)方向一致,位置不一致。

2.3 激光外参(Extrinsic_Laserscanner_to_MCS_Calibration)

给出的是cam2到激光的矩阵变换。

2.4 rigid body外参(Extrinsic_Rigid_Body_to_MCS_Calibration)

给出的是MCS到rigid的外参,rigid坐标系的原点设置在第一球形刚体标记上。

3 数据

3.1 场景


outdoor 和 indoor

http://www2.ipf.kit.edu/~pcv2016/downloads/indoor_dynamic.zip 采集设备在房间里绕圈移动,人们在周围漫步。
http://www2.ipf.kit.edu/~pcv2016/downloads/indoor_static.zip 在房间里没有人四处走动静态场景,采集设备在房间内绕圈移动,然后上下移动。
http://www2.ipf.kit.edu/~pcv2016/downloads/outdoor_rotation.zip 中庭被外墙包围,天气多云,静态场景,采集设备绕其垂直轴旋转。http://www2.ipf.kit.edu/~pcv2016/downloads/outdoor_static.zip 中庭被外墙包围,天气多云,静态场景,录制两段数据,操作者从后到前、从左到右。http://www2.ipf.kit.edu/~pcv2016/downloads/outdoor_static2.zip  中庭被外墙包围,天气多云,静态场景,随机游走。
http://www2.ipf.kit.edu/~pcv2016/downloads/outdoor_large_loop.zip 中庭被外墙包围,天气多云,采集设备正在移出跟踪系统的范围,并以闭环方式围绕整个中庭移动,包含一个闭环。移动出跟踪系统的范围没有真值。

3.2 文件
内部时间戳:通用时间戳,可与其他传感器同步。
传感器时间戳:传感器的时间戳,不可用于同步。

LS_Dist.txt
包含激光扫描仪和被照射表面之间的距离。
文件头部:内部时间戳* | 传感器时间戳** | 距离
距离以毫米为单位。
LS_Dir.txt
包含点的方向。
文件头部:内部时间戳* | 传感器时间戳** | 方向角度
角度以度为单位。
LS_Intensity.txt
包含每个点的强度。
文件头部:内部时间戳* | 传感器时间戳** | 强度
Lspoint.txt  (数据包中并未找到)
包含激光扫描仪坐标系中的点坐标。
文件头部:时间戳* | Lspoint
坐标以米为单位。
Quaternion.txt (数据包中并未找到)
包含传感器位置的四元数表示。
文件头部:内部时间戳* | (传感器位置)| (四元数:X Y Z W)
坐标以米为单位。
Tracker.txt (数据包中并未找到)
包含刚体标记2的位置。
文件头部:内部时间戳* | NatNet时间戳 | (传感器位置)| (传感器坐标系X轴)| (传感器坐标系Y轴)| (传感器坐标系Z轴)
坐标以米为单位。
图片
 
未完

这篇关于Lafida多目数据集实测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872195

相关文章

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务

Jmeter如何向数据库批量插入数据

《Jmeter如何向数据库批量插入数据》:本文主要介绍Jmeter如何向数据库批量插入数据方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Jmeter向数据库批量插入数据Jmeter向mysql数据库中插入数据的入门操作接下来做一下各个元件的配置总结Jmete

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数