【论文阅读】DETR 论文逐段精读

2024-04-03 06:44
文章标签 阅读 论文 精读 逐段 detr

本文主要是介绍【论文阅读】DETR 论文逐段精读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【论文阅读】DETR 论文逐段精读

文章目录

  • 【论文阅读】DETR 论文逐段精读
  • 📖DETR 论文精读【论文精读】
    • 🌐前言
    • 📋摘要
    • 📚引言
    • 🧬相关工作
    • 🔍方法
      • 💡目标函数
      • 📜模型结构
      • ⚙️代码
    • 📌实验

参考跟李沐学AI: 精读DETR

📖DETR 论文精读【论文精读】


🌐前言

目标检测领域:从目标检测开始火到 detr 都很少有端到端的方法,大部分方法最后至少需要后处理操作(NMS, non-maximum suppression 非极大值抑制)。有了 NMS,模型调参就会很复杂,而且即使训练好了一个模型,部署起来也非常困难(NMS 不是所有硬件都支持)。

📋摘要

贡献:把目标检测做成一个端到端的框架,把之前特别依赖人的先验知识的部分删掉了(NMS 部分、anchor)。

DETR提出

  • 新的目标函数,通过二分图匹配的方式,强制模型输出一组独一无二的预测(没有那么多冗余框,每个物体理想状态下就会生成一个框)
  • 使用 encoder-decoder 的架构

两个小贡献:

  1. decoder 还有另外一个输入 learned object query,类似 anchor 的意思
    (给定这些object query之后,detr就可以把learned object query和全局图像信息结合一起,通过不同的做注意力操作,从而让模型直接输出最后的一组预测框)
  2. 想法&&实效性:并行比串行更合适

DETR 的好处:

  1. 简单性:想法上简单,不需要一个特殊的 library,只要硬件支持 transformer 或 CNN,就一定支持 detr
  2. 性能:在 coco 数据集上,detr 和一个训练非常好的 faster RCNN 基线网络取得了差不多的效果,模型内存和速度也和 faster RCNN 差不多
  3. 想法好,解决了目标检测领域很多痛点,写作好
  4. 别的任务:全景分割任务上 detr 效果很好,detr 能够非常简单拓展到其他任务上

📚引言


DETR 流程(训练)

  1. CNN 提特征
  2. 特征拉直,送到 encoder-decoder 中,encoder 作用:进一步学习全局信息,为近下来的 decoder,也就是最后出预测框做铺垫。
  3. decoder 生成框的输出,当你有了图像特征之后,还会有一个 object query(限定了你要出多少框),通过 query 和特征在 decoder 里进行自注意力操作,得到输出的框(文中是100,无论是什么图片都会预测100个框)
  4. loss :二分图匹配,计算100个预测框和2个 GT 框的 matching loss,决定100个预测框哪两个是独一无二对应到红黄色的 GT 框,匹配的框去算目标检测的 loss

推理
1、2、3一致,第四步 loss 不需要,直接在最后的输出上用一个阈值卡一个输出的置信度,置信度比较大(>0.7的)保留,置信度小于0.7的当做背景物体。

🧬相关工作

让 DETR 成功主要原因:transformer

🔍方法

分两块:1、基于集合的目标函数怎么做,作者如何通过二分图匹配把预测的框和 GT 框连接在一起,算得目标函数 2、detr 具体模型架构

💡目标函数

DETR模型最后输出是一个固定集合,无论图片是什么,最后都会输出 n 个(本文 n=100)

问题:detr 每次都会出 100 个输出,但是实际上一个图片的 GT 的 bounding box 可能只有几个,如何匹配?如何计算 loss?怎么知道哪个预测框对应 GT 框?
匈牙利算法是解决该问题的一个知名且高效的算法,能够以较低的复杂度得到唯一的最优解。
在 scipy 库中,已经封装好了匈牙利算法,只需要将成本矩阵(cost matrix)输入进去就能够得到最优的排列。在 DETR 的官方代码中,也是调用的这个函数进行匹配(from scipy.optimize import linear_sum_assignment)。
从N个预测框中,选出与M个GT Box最匹配的预测框,也可以转化为二分图匹配问题,这里需要填入矩阵的“成本”,就是每个预测框和GT Box的损失。对于目标检测问题,损失就是分类损失和边框损失组成。

所以整个步骤就是:

  • 遍历所有的预测框和 GT Box,计算其 loss。
  • 将 loss 构建为 cost matrix,然后用 scipy 的 linear_sum_assignment(匈牙利算法)求出最优解,即找到每个 GT Box 最匹配的那个预测框。
  • 计算最优的预测框和 GT Box 的损失。(分类+回归)

但是在 DETR 中,损失函数有两点小改动:

  • 去掉分类损失中的 log
  • 回归损失为 L1 loss+GIOU

📜模型结构

下面参考官网的一个 demo,以输入尺寸3×800×1066为例进行前向过程:

  • CNN 提取特征([800,1066,3]→[25,34,256]
    backbone 为 ResNet-50,最后一个 stage 输出特征图为 25×34×2048(32 倍下采样),然后用 1×1 的卷积将通道数降为 256;
  • Transformer encoder 计算自注意力([25,34,256]→[850,256]
    将上一步的特征拉直为 850×256,并加上同样维度的位置编码(Transformer 本身没有位置信息),然后输入的 Transformer encoder 进行自注意力计算,最终输出维度还是 850×256;
  • Transformer decoder 解码,生成预测框
    decoder 输入除了 encoder 部分最终输出的图像特征,还有前面提到的 learned object query,其维度为 100×256。在解码时,learned object query 和全局图像特征不停地做 across attention,最终输出 100×256 的自注意力结果。
    这里的 object query 即相当于之前的 anchor/proposal,是一个硬性条件,告诉模型最后只得到 100 个输出。然后用这 100 个输出接 FFN 得到分类损失和回归损失。
  • 使用检测头输出预测框
    检测头就是目标检测中常用的全连接层(FFN),输出 100 个预测框( h x c e n t e r , y c e n t e r , w , h h x_{center}, y_{center}, w, h hxcenter,ycenter,w,h )和对应的类别。
  • 使用二分图匹配方式输出最终的预测框,然后计算预测框和真实框的损失,梯度回传,更新网络。

除此之外还有部分细节:

  • Transformer-encode/decoder 都有 6层
  • 除第一层外,每层 Transformer encoder 里都会先计算 object query 的 self-attention,主要是为了移除冗余框。这些 query 交互之后,大概就知道每个 query 会出哪种框,互相之间不会再重复(见实验)。
  • decoder 加了 auxiliary loss,即每层 decoder 输出的 100×256 维的结果,都加了 FFN 得到输出,然后去计算 loss,这样模型收敛更快。(每层 FFN 共享参数)

⚙️代码

import torch
from torch import nn
from torchvision.models import resnet50class DETR(nn.Module):def __init__(self, num_classes, hidden_dim, nheads,num_encoder_layers, num_decoder_layers):super().__init__()# We take only convolutional layers from ResNet-50 modelself.backbone = nn.Sequential(*list(resnet50(pretrained=True).children())[:-2])self.conv = nn.Conv2d(2048, hidden_dim, 1) # 1×1卷积层将2048维特征降到256维self.transformer = nn.Transformer(hidden_dim, nheads, num_encoder_layers, num_decoder_layers)self.linear_class = nn.Linear(hidden_dim, num_classes + 1) # 类别FFNself.linear_bbox = nn.Linear(hidden_dim, 4)                # 回归FFNself.query_pos = nn.Parameter(torch.rand(100, hidden_dim)) # object query# 下面两个是位置编码self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2))def forward(self, inputs):x = self.backbone(inputs)h = self.conv(x)H, W = h.shape[-2:]pos = torch.cat([self.col_embed[:W].unsqueeze(0).repeat(H, 1, 1),self.row_embed[:H].unsqueeze(1).repeat(1, W, 1),], dim=-1).flatten(0, 1).unsqueeze(1) # 位置编码h = self.transformer(pos + h.flatten(2).permute(2, 0, 1),self.query_pos.unsqueeze(1))return self.linear_class(h), self.linear_bbox(h).sigmoid()detr = DETR(num_classes=91, hidden_dim=256, nheads=8, num_encoder_layers=6, num_decoder_layers=6)
detr.eval()
inputs = torch.randn(1, 3, 800, 1200)
logits, bboxes = detr(inputs)

📌实验

  • 最上面一部分是 Detectron 2 实现的 Faster RCNN ,但是本文中作者使用了很多 trick
  • 中间部分是作者使用了 GIoU loss、更强的数据增强策略、更长的训练时间来把上面三个模型重新训练了一次,这样更显公平。重新训练的模型以+表示,参数量等这些是一样的,但是普偏提了两个点
  • 下面部分是 DETR 模型,可以看到参数量、GFLOPS 更小,但是推理更慢。模型比 Faster RCNN 精度高一点,主要是大物体检测提升 6 个点 AP,小物体相比降低了 4个点左右

这篇关于【论文阅读】DETR 论文逐段精读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872175

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

软件架构模式:5 分钟阅读

原文: https://orkhanscience.medium.com/software-architecture-patterns-5-mins-read-e9e3c8eb47d2 软件架构模式:5 分钟阅读 当有人潜入软件工程世界时,有一天他需要学习软件架构模式的基础知识。当我刚接触编码时,我不知道从哪里获得简要介绍现有架构模式的资源,这样它就不会太详细和混乱,而是非常抽象和易

BERT 论文逐段精读【论文精读】

BERT: 近 3 年 NLP 最火 CV: 大数据集上的训练好的 NN 模型,提升 CV 任务的性能 —— ImageNet 的 CNN 模型 NLP: BERT 简化了 NLP 任务的训练,提升了 NLP 任务的性能 BERT 如何站在巨人的肩膀上的?使用了哪些 NLP 已有的技术和思想?哪些是 BERT 的创新? 1标题 + 作者 BERT: Pre-trainin

[论文笔记]LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale

引言 今天带来第一篇量化论文LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale笔记。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 大语言模型已被广泛采用,但推理时需要大量的GPU内存。我们开发了一种Int8矩阵乘法的过程,用于Transformer中的前馈和注意力投影层,这可以将推理所需

【阅读文献】一个使用大语言模型的端到端语音概要

摘要 ssum框架(Speech Summarization)为了 从说话人的语音提出对应的文本二题出。 ssum面临的挑战: 控制长语音的输入捕捉 the intricate cross-mdoel mapping 在长语音输入和短文本之间。 ssum端到端模型框架 使用 Q-Former 作为 语音和文本的中介连接 ,并且使用LLMs去从语音特征正确地产生文本。 采取 multi-st