【背包九讲】01背包问题

2024-04-03 06:38
文章标签 问题 01 背包 九讲

本文主要是介绍【背包九讲】01背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、01背包问题描述

已知:有 N 件物品和一个容量为 V 的背包。第i件物品的重量为w[i],得到的价值是 c[i].
问题:求解将哪些物品装入背包可使价值总和最大。
条件:每种物品只有一件,可以选择放或者不放

2、基本思路

01背包的特点:每种物品只有一件,可以选择放或者不放

子问题定义状态
F[i][v] :前i件物品放到一个容量为V的背包中的最大价值
状态转移方程
F[i][v] = max(F[i-1][v],F[i-1][v-w[i]]+c[i])

分析:
考虑到子问题的状态定义,将前i件物品都放到容量为V的背包中,那么第i件物品有两种选择:放&不放;
(1)当选择第i将物品不放入背包时,那么此时只有前i-1件物品放到容量为V的背包中,所以最大的价值为:F[i-1][v];
(2)当选择第i间物品放到背包时,那么此时前i-1件物品就会放到容量为V-w[i]的背包中,所以最大的价值为:F[i-1][v-w[i]+c[i]

举个栗子:
背包承重量10,5件物品,重量[2,3,3,4,6], 价值[1,2,5,9,4].

  • 填表
    在这里插入图片描述
    每一行表示每件物品的重量(价值),每一列表示最大承重,填表的内容表示当前的最大价值。

  • 填表的方法
    例如最大承重为5,第二行就只需要考虑2(1)和3(2)的情况,
    (1)如果不拿3(2),就只能选择上一行的物品,即只有2(1)这一种选择,价值为1;
    (2)如果拿3(2),物品的重量为3(价值为2),与此同时,还可以继续选择上一行的物品2(1),最终选择的物品价值为3;
    综上,选取物品的最大价值为3

  • 总结
    第i行,第j列的价值应该等于: max (dp[i-1][j], v[i]+ dp[i-1][j-w[i]])

代码实现

//01背包
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;int maxValue(int n, int c, vector<int> v, vector<int> w) 
{int **dp = new int*[n];//初始化for (int i = 0; i < n; i++) {dp[i] = new int[c + 1];for (int j = 0; j <= c; j++){dp[i][j] = 0;}}//处理第一行for (int j = 0; j <= c; j++){dp[0][j] += (j >= w[0]) ? v[0] : 0;}for (int i = 1; i < n; i++) {for (int j = 0; j <= c; j++) {if (j < w[i]){dp[i][j] = dp[i - 1][j];}else{dp[i][j] = max(v[i] + dp[i - 1][j - w[i]], dp[i - 1][j]);}}}return dp[n - 1][c];
}int main() 
{int n = 0, capacity = 0;//物品数量、背包容量cin >> n >> capacity;vector<int> values(n, 0);//物品价值vector<int> weights(n, 0);//物品重量for (int j = 0; j < n; j++)cin >> weights[j];for (int i = 0; i < n; i++)cin >> values[i];cout << maxValue(n, capacity, values, weights) << endl;system("pause");return 0;
}

性能分析
时间复杂度为:O(nv)
空间复杂度为:O(n
v),其中n表示物品的数量,v表示背包的容量
时间复杂度不能在优化,但是空间复杂度可以继续优化为O(v)

3、空间复杂度优化

上述方法采用的是二维数组,可以继续优化为一维数组

状态定义:F[v] :前i件物品放到一个容量为V的背包中的最大价值
状态转移方程:F[v]=max(F[v],F[v-w[i]]+c[i])

代码实现

//01背包
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;int maxValue_1(int n, int c, vector<int> v, vector<int> w)
{int *dp = new int[n];memset(dp, 0, sizeof(dp));for (int i = 1; i < n; i++){for (int j = c; j >= w[i]; j--){dp[j] = max(v[i] + dp[j - w[i]], dp[j]);}}return dp[c];
}int main()
{int n = 0, capacity = 0;//物品数量、背包容量cin >> n >> capacity;vector<int> values(n, 0);//物品价值vector<int> weights(n, 0);//物品重量for (int j = 0; j < n; j++)cin >> weights[j];for (int i = 0; i < n; i++)cin >> values[i];cout << maxValue_1(n, capacity, values, weights) << endl;system("pause");return 0;
}
4、初始化细节问题

在求解背包问题时,事实上有两种不太相同的问法。
有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。
这两种问法的实现方法是在初始化的时候有所不同。

(1)第一种问法,要求恰好装满背包,那么在初始化时除了 F[0] 为 0,其它F[1][v] 均设为 -∞ ,这样就可以保证最终得到的 F[V ] 是一种恰好装满背包的最优解。

(2)如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将 F[n][v]全部设为 0。

原因:初始化的 F 数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为 0 的背包可以在什么也不装且价值为 0 的情况下被“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,应该被赋值为 -∞ 了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为 0,所以初始时状态的值也就全部为 0了。

4、小结

01 背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想。另外,别的类型的背包问题往往也可以转换成 01 背包问题求解。

这篇关于【背包九讲】01背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872166

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符