【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】

本文主要是介绍【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 【可更换其他算法,`获取资源`请见文章第5节:资源获取】
    • 1. 基础灰狼算法
    • 2. 三维覆盖模型
    • 3. 部分代码展示
    • 4. 仿真结果展示
    • 5. 资源获取


【可更换其他算法,获取资源请见文章第5节:资源获取】


1. 基础灰狼算法

比较常见,此处不再介绍。

2. 三维覆盖模型

三维覆盖模型如下面图1所示。
在这里插入图片描述

由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以 R c o v R_{cov} Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒 N N N个传感器节点,形成节点集 S = { s 1 , s 2 , . . . , s N } (1) S=\left \{ s_{1},s_{2},...,s_{N} \right \} \tag{1} S={s1,s2,...,sN}(1)
其中,第 i i i个节点的坐标为 s i ( x i , y i , z i ) s_{i}(x_{i},y_{i},z_{i}) si(xi,yi,zi)。三维监控节点集合为 L = { l 1 , l 2 , . . . , l N } (2) L=\left \{ l_{1},l_{2},...,l_{N} \right \} \tag{2} L={l1,l2,...,lN}(2)其中,三维监测区域内某个目标点为 l v ( x v , y v , z v ) l_{v}(x_{v},y_{v},z_{v}) lv(xv,yv,zv),三维监控点与目标点的距离为:
d ( s i , l v ) = ( x i − x v ) 2 + ( y i − y v ) 2 + ( z i − z v ) 2 (3) d(s_{i},l_{v})=\sqrt{(x_{i}-x_{v})^{2}+ (y_{i}-y_{v})^{2}+(z_{i}-z_{v})^{2}} \tag{3} d(si,lv)=(xixv)2+(yiyv)2+(zizv)2 (3)
d ( s i , l v ) ≤ R s d(s_{i},l_{v})\le R_{s} d(si,lv)Rs,则目标点在三维覆盖区域内,感知度标记为1;相反,则在三维覆盖区域之外,感知度标记为0。采用布尔感知模型,感知度为:
p ( s i , l v ) = { 1 , d ( s i , l v ) ≤ R S 0 , d ( s i , l v ) > R S (4) p(s_{i},l_{v})=\left\{\begin{matrix} 1,d(s_{i},l_{v})\le R_{S} \\ 0,d(s_{i},l_{v})> R_{S} \end{matrix}\right. \tag{4} p(si,lv)={1,d(si,lv)RS0,d(si,lv)>RS(4)
其中,R_{s}为节点的通信半径,假设三维网络中有 k k k个 待测节点 s 1 , s 2 , . . . , s k s_{1},s_{2},...,s_{k} s1,s2,...,sk,对应点 l l l的覆盖率分别为 p ( s i , l v ) p(s_{i},l_{v}) p(si,lv),其中 k a l l k_{all} kall是监测区域内所有待测传感器节点, R p ( k a l l , l v ) R_{p}(k_{all},l_{v}) Rp(kall,lv)为联合感知概率,表达式为:
R p ( k a l l , l v ) = 1 − ∏ i = 1 k ( 1 − p ( s i , l v ) ) (5) R_{p}(k_{all},l_{v})=1-\prod_{i=1}^{k}(1-p(s_{i},l_{v})) \tag{5} Rp(kall,lv)=1i=1k(1p(si,lv))(5)
网络整体覆盖率为:
R c o v = ∑ i = 1 k R p ( k a l l , l v ) k (6) R_{cov}=\frac{\sum_{i=1}^{k}R_{p}(k_{all},l_{v}) }{k} \tag{6} Rcov=ki=1kRp(kall,lv)(6)
其中, R c o v R_{cov} Rcov是传感器网络的整体覆盖率, P P P为区域中的任意一个监测点。以覆盖率为适应度函数,可以检验无线传感网络覆盖性能。

3. 部分代码展示

for i = 1 : SearchAgents_noPositionsX( i, : ) = lb + (ub - lb) .* rand( 1, dim ); PositionsY( i, : ) = lb + (ub - lb) .* rand( 1, dim );PositionsZ( i, : ) = lb + (ub - lb) .* rand( 1, dim );Fitness(i)=feval(objfun,PositionsX( i, : ),PositionsY( i, : ),PositionsZ( i, : ),dim,r,d);% 得到1行20列的向量,20个蜜源的覆盖率
end% [ ObjMax, ObjbestI ] = max( Fitness );
[ fMax, fbestI ] = max( Fitness );
bestX = PositionsX( fbestI, : ); 
bestY = PositionsY( fbestI, : ); 
bestZ = PositionsZ( fbestI, : );
% 画图
figure(1)
for i=1:dimx = bestX(1,i);y = bestY(1,i);z = bestZ(1,i);cc(x,y,z,r);hold on;
end
xlabel('X(m)');
ylabel('Y(m)');
zlabel('Z(m)');
title('优化前覆盖效果');

4. 仿真结果展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. 资源获取

可更换其他群智能算法,获取完整代码资源。👇👇👇👀名片

这篇关于【WSN覆盖】基于灰狼优化算法的三维无线传感器网络覆盖优化 三维WSN覆盖优化【Matlab代码#72】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871334

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig